scholarly journals Full-length trimeric influenza virus hemagglutinin II membrane fusion protein and shorter constructs lacking the fusion peptide or transmembrane domain: Hyperthermostability of the full-length protein and the soluble ectodomain and fusion peptide make significant contributions to fusion of membrane vesicles

2016 ◽  
Vol 117 ◽  
pp. 6-16 ◽  
Author(s):  
Punsisi U. Ratnayake ◽  
E.A. Prabodha Ekanayaka ◽  
Sweta S. Komanduru ◽  
David P. Weliky
2005 ◽  
Vol 79 (18) ◽  
pp. 12065-12076 ◽  
Author(s):  
Yinling Li ◽  
Xing Han ◽  
Alex L. Lai ◽  
John H. Bushweller ◽  
David S. Cafiso ◽  
...  

ABSTRACT Influenza virus hemagglutinin (HA)-mediated membrane fusion is initiated by a conformational change that releases a V-shaped hydrophobic fusion domain, the fusion peptide, into the lipid bilayer of the target membrane. The most N-terminal residue of this domain, a glycine, is highly conserved and is particularly critical for HA function; G1S and G1V mutant HAs cause hemifusion and abolish fusion, respectively. We have determined the atomic resolution structures of the G1S and G1V mutant fusion domains in membrane environments. G1S forms a V with a disrupted “glycine edge” on its N-terminal arm and G1V adopts a slightly tilted linear helical structure in membranes. Abolishment of the kink in G1V results in reduced hydrophobic penetration of the lipid bilayer and an increased propensity to formβ -structures at the membrane surface. These results underline the functional importance of the kink in the fusion peptide and suggest a structural role for the N-terminal glycine ridge in viral membrane fusion.


2000 ◽  
Vol 74 (16) ◽  
pp. 7529-7537 ◽  
Author(s):  
Christine Kozerski ◽  
Evgeni Ponimaskin ◽  
Britta Schroth-Diez ◽  
Michael F. G. Schmidt ◽  
Andreas Herrmann

ABSTRACT The fusion activity of chimeras of influenza virus hemagglutinin (HA) (from A/fpv/Rostock/34; subtype H7) with the transmembrane domain (TM) and/or cytoplasmic tail (CT) either from the nonviral, nonfusogenic T-cell surface protein CD4 or from the fusogenic Sendai virus F-protein was studied. Wild-type or chimeric HA was expressed in CV-1 cells by the transient T7-RNA-polymerase vaccinia virus expression system. Subsequently, the fusion activity of the expression products was monitored with red blood cells or ghosts as target cells. To assess the different steps of fusion, target cells were labeled with the fluorescent membrane label octadecyl rhodamine B-chloride (R18) (membrane fusion) and with the cytoplasmic fluorophores calcein (molecular weight [MW], 623; formation of small aqueous fusion pore) and tetramethylrhodamine-dextran (MW, 10,000; enlargement of fusion pore). All chimeric HA/F-proteins, as well as the chimera with the TM of CD4 and the CT of HA, were able to mediate the different steps of fusion very similarly to wild-type HA. Quite differently, chimeric proteins with the CT of CD4 were strongly impaired in mediating pore enlargement. However, membrane fusion and formation of small pores were similar to those of wild-type HA, indicating that the conformational change of the ectodomain and earlier fusion steps were not inhibited. Various properties of the CT which may affect pore enlargement are considered. We surmise that the hydrophobicity of the sequence adjacent to the transmembrane domain is important for pore dilation.


2004 ◽  
Vol 78 (6) ◽  
pp. 2808-2818 ◽  
Author(s):  
Maya Shmulevitz ◽  
Raquel F. Epand ◽  
Richard M. Epand ◽  
Roy Duncan

ABSTRACT The avian and Nelson Bay reoviruses are two of only a limited number of nonenveloped viruses capable of inducing cell-cell membrane fusion. These viruses encode the smallest known membrane fusion proteins (p10). We now show that a region of moderate hydrophobicity we call the hydrophobic patch (HP), present in the small N-terminal ectodomain of p10, shares the following characteristics with the fusion peptides of enveloped virus fusion proteins: (i) an abundance of glycine and alanine residues, (ii) a potential amphipathic secondary structure, (iii) membrane-seeking characteristics that correspond to the degree of hydrophobicity, and (iv) the ability to induce lipid mixing in a liposome fusion assay. The p10 HP is therefore predicted to provide a function in the mechanism of membrane fusion similar to those of the fusion peptides of enveloped virus fusion peptides, namely, association with and destabilization of opposing lipid bilayers. Mutational and biophysical analysis suggested that the internal fusion peptide of p10 lacks alpha-helical content and exists as a disulfide-stabilized loop structure. Similar kinked structures have been reported in the fusion peptides of several enveloped virus fusion proteins. The preservation of a predicted loop structure in the fusion peptide of this unusual nonenveloped virus membrane fusion protein supports an imperative role for a kinked fusion peptide motif in biological membrane fusion.


1995 ◽  
Vol 69 (11) ◽  
pp. 6643-6651 ◽  
Author(s):  
D A Steinhauer ◽  
S A Wharton ◽  
J J Skehel ◽  
D C Wiley

1998 ◽  
Vol 72 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Britta Schroth-Diez ◽  
Evgeni Ponimaskin ◽  
Helmut Reverey ◽  
Michael F. G. Schmidt ◽  
Andreas Herrmann

ABSTRACT The role of the sequence of transmembrane and cytoplasmic/intraviral domains of influenza virus hemagglutinin (HA, subtype H7) for HA-mediated membrane fusion was explored. To analyze the influence of the two domains on the fusogenic properties of HA, we designed HA-chimeras in which the cytoplasmic tail and/or transmembrane domain of HA was replaced with the corresponding domains of the fusogenic glycoprotein F of Sendai virus. These chimeras, as well as constructs of HA in which the cytoplasmic tail was replaced by peptides of human neurofibromin type1 (NF1) or c-Raf-1, NF78 (residues 1441 to 1518), and Raf81 (residues 51 to 131), respectively, were expressed in CV-1 cells by using the vaccinia virus-T7 polymerase transient-expression system. Wild-type and chimeric HA were cleaved properly into two subunits and expressed as trimers. Membrane fusion between CV-1 cells and bound human erythrocytes (RBCs) mediated by parental or chimeric HA proteins was studied by a lipid-mixing assay with the lipid-like fluorophore octadecyl rhodamine B chloride (R18). No profound differences in either extent or kinetics could be observed. After the pH was lowered, the above proteins also induced a flow of the aqueous fluorophore calcein from preloaded RBCs into the cytoplasm of the protein-expressing CV-1 cells, indicating that membrane fusion involves both leaflets of the lipid bilayers and leads to formation of an aqueous fusion pore. We conclude that neither HA-specific sequences in the transmembrane and cytoplasmic domains nor their length is crucial for HA-induced membrane fusion activity.


Sign in / Sign up

Export Citation Format

Share Document