helical hairpin
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 24)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pawel R. Laskowski ◽  
Kristyna Pluhackova ◽  
Maximilian Haase ◽  
Brian M. Lang ◽  
Gisela Nagler ◽  
...  

AbstractCells employ highly conserved families of insertases and translocases to insert and fold proteins into membranes. How insertases insert and fold membrane proteins is not fully known. To investigate how the bacterial insertase YidC facilitates this process, we here combine single-molecule force spectroscopy and fluorescence spectroscopy approaches, and molecular dynamics simulations. We observe that within 2 ms, the cytoplasmic α-helical hairpin of YidC binds the polypeptide of the membrane protein Pf3 at high conformational variability and kinetic stability. Within 52 ms, YidC strengthens its binding to the substrate and uses the cytoplasmic α-helical hairpin domain and hydrophilic groove to transfer Pf3 to the membrane-inserted, folded state. In this inserted state, Pf3 exposes low conformational variability such as typical for transmembrane α-helical proteins. The presence of YidC homologues in all domains of life gives our mechanistic insight into insertase-mediated membrane protein binding and insertion general relevance for membrane protein biogenesis.


iScience ◽  
2021 ◽  
pp. 103606
Author(s):  
Jianbing Ma ◽  
Chunhua Xu ◽  
Jinghua Li ◽  
Xi-Miao Hou ◽  
Lin-Tai Da ◽  
...  

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Aaron J. O. Lewis ◽  
Ramanujan S. Hegde

Abstract Background Protein transporters translocate hydrophilic segments of polypeptide across hydrophobic cell membranes. Two protein transporters are ubiquitous and date back to the last universal common ancestor: SecY and YidC. SecY consists of two pseudosymmetric halves, which together form a membrane-spanning protein-conducting channel. YidC is an asymmetric molecule with a protein-conducting hydrophilic groove that partially spans the membrane. Although both transporters mediate insertion of membrane proteins with short translocated domains, only SecY transports secretory proteins and membrane proteins with long translocated domains. The evolutionary origins of these ancient and essential transporters are not known. Results The features conserved by the two halves of SecY indicate that their common ancestor was an antiparallel homodimeric channel. Structural searches with SecY’s halves detect exceptional similarity with YidC homologs. The SecY halves and YidC share a fold comprising a three-helix bundle interrupted by a helical hairpin. In YidC, this hairpin is cytoplasmic and facilitates substrate delivery, whereas in SecY, it is transmembrane and forms the substrate-binding lateral gate helices. In both transporters, the three-helix bundle forms a protein-conducting hydrophilic groove delimited by a conserved hydrophobic residue. Based on these similarities, we propose that SecY originated as a YidC homolog which formed a channel by juxtaposing two hydrophilic grooves in an antiparallel homodimer. We find that archaeal YidC and its eukaryotic descendants use this same dimerisation interface to heterodimerise with a conserved partner. YidC’s sufficiency for the function of simple cells is suggested by the results of reductive evolution in mitochondria and plastids, which tend to retain SecY only if they require translocation of large hydrophilic domains. Conclusions SecY and YidC share previously unrecognised similarities in sequence, structure, mechanism, and function. Our delineation of a detailed correspondence between these two essential and ancient transporters enables a deeper mechanistic understanding of how each functions. Furthermore, key differences between them help explain how SecY performs its distinctive function in the recognition and translocation of secretory proteins. The unified theory presented here explains the evolution of these features, and thus reconstructs a key step in the origin of cells.


2021 ◽  
Author(s):  
Samapan Sikdar ◽  
Manidipa Banerjee ◽  
Satyavani Vemparala

AbstractThe importance of disulfide bond in mediating viral peptide entry into host cells is well known. In the present work, we elucidate the role of disulfide (SS) bond in partitioning mechanism of membrane active Hepatitis A Virus-2B (HAV-2B) peptide, which harbours three cysteine residues promoting formation of multiple SS-bonded states. The inclusion of SS-bond not only results in a compact conformation but also induces distorted α-helical hairpin geometry in comparison to SS-free state, resulting in reduced hydrophobic exposure. Owing to this, the partitioning of HAV-2B peptide is completely or partly abolished. In a way, the disulfide bond regulates the partitioning of HAV-2B peptide, such that the membrane remodelling effects of this viral peptide are significantly reduced. The current findings may have potential implications in drug designing, targeting the HAV-2B protein by promoting disulfide bond formation within its membrane active region.


2021 ◽  
Vol 118 (36) ◽  
pp. e2101805118
Author(s):  
Yu Bao ◽  
Robert Landick

The catalytic trigger loop (TL) in RNA polymerase (RNAP) alternates between unstructured and helical hairpin conformations to admit and then contact the NTP substrate during transcription. In many bacterial lineages, the TL is interrupted by insertions of two to five surface-exposed, sandwich-barrel hybrid motifs (SBHMs) of poorly understood function. The 188-amino acid, two-SBHM insertion in Escherichia coli RNAP, called SI3, occupies different locations in elongating, NTP-bound, and paused transcription complexes, but its dynamics during active transcription and pausing are undefined. Here, we report the design, optimization, and use of a Cys-triplet reporter to measure the positional bias of SI3 in different transcription complexes and to determine the effect of restricting SI3 movement on nucleotide addition and pausing. We describe the use of H2O2 as a superior oxidant for RNAP disulfide reporters. NTP binding biases SI3 toward the closed conformation, whereas transcriptional pausing biases SI3 toward a swiveled position that inhibits TL folding. We find that SI3 must change location in every round of nucleotide addition and that restricting its movements inhibits both transcript elongation and pausing. These dynamics are modulated by a crucial Phe pocket formed by the junction of the two SBHM domains. This SI3 Phe pocket captures a Phe residue in the RNAP jaw when the TL unfolds, explaining the similar phenotypes of alterations in the jaw and SI3. Our findings establish that SI3 functions by modulating TL folding to aid transcriptional regulation and to reset secondary channel trafficking in every round of nucleotide addition.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicholas G. Housden ◽  
Melissa N. Webby ◽  
Edward D. Lowe ◽  
Tarick J. El-Baba ◽  
Renata Kaminska ◽  
...  

AbstractBacteria often secrete diffusible protein toxins (bacteriocins) to kill bystander cells during interbacterial competition. Here, we use biochemical, biophysical and structural analyses to show how a bacteriocin exploits TolC, a major outer-membrane antibiotic efflux channel in Gram-negative bacteria, to transport itself across the outer membrane of target cells. Klebicin C (KlebC), a rRNase toxin produced by Klebsiella pneumoniae, binds TolC of a related species (K. quasipneumoniae) with high affinity through an N-terminal, elongated helical hairpin domain common amongst bacteriocins. The KlebC helical hairpin opens like a switchblade to bind TolC. A cryo-EM structure of this partially translocated state, at 3.1 Å resolution, reveals that KlebC associates along the length of the TolC channel. Thereafter, the unstructured N-terminus of KlebC protrudes beyond the TolC iris, presenting a TonB-box sequence to the periplasm. Association with proton-motive force-linked TonB in the inner membrane drives toxin import through the channel. Finally, we demonstrate that KlebC binding to TolC blocks drug efflux from bacteria. Our results indicate that TolC, in addition to its known role in antibiotic export, can function as a protein import channel for bacteriocins.


2021 ◽  
Author(s):  
Yu Bao ◽  
Robert Landick

ABSTRACTThe catalytic trigger loop (TL) in RNA polymerase (RNAP) alternates between unstructured and helical hairpin conformations to admit and then contact the NTP substrate during transcription. In many bacterial lineages, the TL is interrupted by insertions of 2–5 surface-exposed, sandwich-barrel hybrid motifs (SBHMs) of poorly understood function. The 188-aa, 2-SBHM E. coli insertion, called SI3, occupies different locations in halted, NTP-bound, and paused transcription complexes, but its dynamics during active transcription and pausing are undefined. Here we report design, optimization, and use of a Cys-triplet reporter to measure the positional bias of SI3 in different transcription complexes and to determine the effect of restricting SI3 movement on nucleotide addition and pausing. We describe use of H2O2 as a superior oxidant for RNAP disulfide reporters. NTP binding biases SI3 toward the closed conformation whereas transcriptional pausing biases SI3 toward a swiveled position that inhibits TL folding. We find that SI3 must change location in every round of nucleotide addition and that restricting its movements inhibits both transcript elongation and pausing. These dynamics are modulated by a crucial Phe pocket formed by the junction of the two SBHM domains. This SI3 Phe pocket captures a Phe residue in the RNAP jaw when the TL unfolds, explaining the similar phenotypes of alterations in the jaw and SI3. Our findings establish that SI3 functions by modulating the TL folding to aid transcriptional regulation and to reset secondary channel trafficking in every round of nucleotide addition.SIGNIFICANCERNA synthesis by cellular RNA polymerases depends on an active-site component called the trigger loop that oscillates between an unstructured loop that admits NTP substrates and a helical hairpin that positions the NTP in every round of nucleotide addition. In most bacteria, the trigger loop contains a large, surface-exposed insertion module that occupies different positions in halted transcription complexes but whose function during active transcription is unknown. By developing and using a novel disulfide reporter system, we find the insertion module also must alternate between in and out positions for every nucleotide addition, must swivel to a paused position to support regulation, and, in enterobacteria, evolved a “Phe pocket” that captures a key phenylalanine in the out and swivel positions.


2020 ◽  
pp. 107692
Author(s):  
Bankala Krishnarjuna ◽  
Punnepalli Sunanda ◽  
Jessica Villegas–Moreno ◽  
Agota Csoti ◽  
Rodrigo A.V. Morales ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. e202000795
Author(s):  
Joseph A Newman ◽  
Angeline E Gavard ◽  
Simone Lieb ◽  
Madhwesh C Ravichandran ◽  
Katja Hauer ◽  
...  

Loss of WRN, a DNA repair helicase, was identified as a strong vulnerability of microsatellite instable (MSI) cancers, making WRN a promising drug target. We show that ATP binding and hydrolysis are required for genome integrity and viability of MSI cancer cells. We report a 2.2-Å crystal structure of the WRN helicase core (517–1,093), comprising the two helicase subdomains and winged helix domain but not the HRDC domain or nuclease domains. The structure highlights unusual features. First, an atypical mode of nucleotide binding that results in unusual relative positioning of the two helicase subdomains. Second, an additional β-hairpin in the second helicase subdomain and an unusual helical hairpin in the Zn2+ binding domain. Modelling of the WRN helicase in complex with DNA suggests roles for these features in the binding of alternative DNA structures. NMR analysis shows a weak interaction between the HRDC domain and the helicase core, indicating a possible biological role for this association. Together, this study will facilitate the structure-based development of inhibitors against WRN helicase.


Sign in / Sign up

Export Citation Format

Share Document