membrane proximal region
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 3)

H-INDEX

31
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Qing Fan ◽  
Richard Longnecker ◽  
Sarah A. Connolly

The viral fusion protein glycoprotein B (gB) is conserved in all herpesviruses and is essential for virus entry. During entry, gB fuses viral and host cell membranes by refolding from a prefusion to a postfusion form. We previously introduced three structure-based mutations (gB-I671A/H681A/F683A) into the domain V arm of the gB ectodomain that resulted in reduced cell-cell fusion. A virus carrying these three mutations (called gB3A) displayed a small plaque phenotype and remarkably delayed entry into cells. To identify mutations that could counteract this phenotype, we serially passaged the gB3A virus and selected for revertant viruses with increased plaque size. Genomic sequencing revealed that the revertant viruses had second-site mutations in gB, including E187A, M742T, and S383F/G645R/V705I/V880G. Using expression constructs encoding these mutations, only gB-V880G was shown to enhance cell-cell fusion. In contrast, all of the revertant viruses showed enhanced entry kinetics, underscoring the fact that cell-cell fusion and virus-cell fusion are different. The results indicate that mutations in three different regions of gB (domain I, the membrane proximal region, and the cytoplasmic tail domain) can counteract the slow entry phenotype of gB3A virus. Mapping these compensatory mutations to prefusion and postfusion structural models suggests sites of intramolecular functional interactions with the gB domain V arm that may contribute to the gB fusion function. Importance The nine human herpesviruses are ubiquitous and cause a range of disease in humans. Glycoprotein B (gB) is an essential viral fusion protein that is conserved in all herpesviruses. During host cell entry, gB mediates virus-cell membrane fusion by undergoing a conformational change. Structural models for the prefusion and postfusion form of gB exist, but the details of how the protein converts from one to the other are unclear. We previously introduced structure-based mutations into gB that inhibited virus entry and fusion. By passaging this entry-deficient virus over time, we selected second-site mutations that partially restore virus entry. The location of these mutations suggest regulatory sites that contribute to fusion and gB refolding during entry. gB is a target of neutralizing antibodies and defining how gB refolds during entry could provide a basis for the development of fusion inhibitors for future research or clinical use.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Christopher Aisenbrey ◽  
Omar Rifi ◽  
Burkhard Bechinger

AbstractDuring the first steps of HIV infection the Env subunit gp41 is thought to establish contact between the membranes and to be the main driver of fusion. Here we investigated in liquid crystalline membranes the structure and cholesterol recognition of constructs made of a gp41 external region carrying a cholesterol recognition amino acid consensus (CRAC) motif and a hydrophobic membrane anchoring sequence. CD- und ATR-FTIR spectroscopies indicate that the constructs adopt a high degree of helical secondary structure in membrane environments. Furthermore, 15N and 2H solid-state NMR spectra of gp41 polypeptides reconstituted into uniaxially oriented bilayers agree with the CRAC domain being an extension of the transmembrane helix. Upon addition of cholesterol the CRAC NMR spectra remain largely unaffected when being associated with the native gp41 transmembrane sequence but its topology changes when anchored in the membrane by a hydrophobic model sequence. The 2H solid-state NMR spectra of deuterated cholesterol are indicative of a stronger influence of the model sequence on this lipid when compared to the native gp41 sequence. These observations are suggestive of a strong coupling between the transmembrane and the membrane proximal region of gp41 possibly enforced by oligomerization of the transmembrane helical region.


2019 ◽  
Author(s):  
Z. Haydari ◽  
H. Shams ◽  
Z. Jahed ◽  
M.R.K. Mofrad

AbstractIntegrin αIIbβ3 is a predominant type of integrin abundantly expressed on the surface of platelets and its activation regulates the process of thrombosis. Talin and kindlin are cytoplasmic proteins that bind to integrin and modulate its affinity for extracellular ligands. While the molecular details of talin-mediated integrin activation are known, the mechanism of kindlin involvement in this process remains elusive. Here, we demonstrate that the interplay between talin and kindlin promotes integrin activation. Our all-atomic molecular dynamics simulations on complete transmembrane and cytoplasmic domains of integrin αIIbβ3, talin1 F2/F3 subdomains, and kindlin2 FERM domain in an explicit lipid-water environment over microsecond timescale, unraveled the role of kindlin as an enhancer of the talin interaction with the membrane proximal region of β–integrin. The cooperation of kindlin with talin results in a complete disruption of salt bridges between R995 on αIIb and D723/E726 on β3. Furthermore, kindlin modifies the molecular mechanisms of inside-out activation by decreasing the crossing angle between transmembrane helices of integrin αIIb-β3, which eventually results in parallelization of integrin dimer. In addition, our control simulation featuring integrin in complex with kindlin reveals that kindlin binding is not sufficient for unclasping the inner membrane and outer membrane interactions of integrin dimer, thus ruling out the possibility of solitary action of kindlin in integrin activation.Statement of SignificanceUsing the newly solved crystal structure of kindlin, we investigated, for the first time, the molecular mechanism of kindlin-mediated integrin activation through simultaneous binding of talin and kindlin. We demonstrate in atomist details how kindlin cooperates with talin to promote the activation of integrin αIIb-β3.


2018 ◽  
Vol 5 (10) ◽  
pp. 172347 ◽  
Author(s):  
Kalyan Golla ◽  
Ilias Stavropoulos ◽  
Denis C. Shields ◽  
Niamh Moran

The juxtamembrane domains (JMD) of transmembrane proteins are rich in critical peptide sequences that participate in dynamic cell signalling events. Synthetic JMD peptides derived from cadherin cell adhesion proteins have previously been shown to modulate platelet function. In this study, we aimed to develop functional bioactive agents from bioinformatically identified critical peptide sequences. We synthesized overlapping 12–15 amino acid peptides from E- and N-cadherin JMD and assessed their effect on platelet aggregation and platelet ATP secretion. Peptides derived from close to the membrane proximal region inhibit platelet function. Sequential deletion of amino acids from the N- and C-termini of the inhibitory E-cadherin peptides identified the short K 756 EPLLP 763 motif as a critical bioactive sequence. Alanine scanning studies further identified that the di-leucine (LL) motif and positively charged lysine (K) are crucial for peptide activity. Moreover, scrambled peptides failed to show any effect on platelet activity. We conclude that peptides derived from JMD of E-cadherin provide potential lead peptides for the development of anti-thrombotic agents and to enable further understanding of the role of cadherins in platelet function.


2018 ◽  
Author(s):  
Esben Trabjerg ◽  
Nadia Abu-Asad ◽  
Ziqian Wan ◽  
Fredrik Kartberg ◽  
Søren Christensen ◽  
...  

AbstractSortilin is a multifunctional transmembrane neuronal receptor involved in sorting of neurotrophic factors and apoptosis signalling. So far, structural characterization of Sortilin and its endogenous ligands has been limited to crystallographic studies of Sortilin in complex with the neuropeptide Neurotensin. Here, we use hydrogen/deuterium exchange mass spectrometry to investigate the conformational response of Sortilin to binding biological ligands including the peptides Neurotensin and the Sortilin propeptide and the proteins Progranulin and pro-Nerve growth factor-β. The results show that the ligands employ two binding sites inside the cavity of the β-propeller of Sortilin. However, ligands have distinct differences in their conformational impact on the receptor. Interestingly, the protein ligands induce conformational stabilization in a remote membrane-proximal domain, hinting at an unknown conformational link between the ligand binding region and this membrane-proximal region of Sortilin. Our findings improves our molecular understanding of Sortilin and how it mediates diverse ligand-dependent functions important in neurobiology.


2017 ◽  
Vol 92 (1) ◽  
Author(s):  
Xiaolu Guan ◽  
Yao Zhang ◽  
Mengmeng Yu ◽  
Chaoqi Ren ◽  
Yanni Gao ◽  
...  

ABSTRACTChicken Na+/H+exchanger type I (chNHE1), a multispan transmembrane protein, is a cellular receptor of the subgroup J avian leukosis virus (ALV-J). To identify the functional determinants of chNHE1 responsible for the ALV-J receptor activity, a series of chimeric receptors was created by exchanging the extracellular loops (ECL) of human NHE1 (huNHE1) and chNHE1 and by ECL replacement with a hemagglutinin (HA) tag. These chimeric receptors then were used in binding and entry assays to map the minimal ALV-J gp85-binding domain of chNHE1. We show that ECL1 of chNHE1 (chECL1) is the critical functional ECL that interacts directly with ALV-J gp85; ECL3 is also involved in ALV-J gp85 binding. Amino acid residues 28 to 39 of the N-terminal membrane-proximal region of chECL1 constitute the minimal domain required for chNHE1 binding of ALV-J gp85. These residues are sufficient to mediate viral entry into ALV-J nonpermissive cells. Point mutation analysis revealed that A30, V33, W38, and E39 of chECL1 are the key residues mediating the binding between chNHE1 and ALV-J gp85. Further, the replacement of residues 28 to 39 of huNHE1 with the corresponding chNHE1 residues converted the nonfunctional ALV-J receptor huNHE1 to a functional one. Importantly, soluble chECL1 and huECL1 harboring chNHE1 residues 28 to 39 both could effectively block ALV-J infection. Collectively, our findings indicate that residues 28 to 39 of chNHE1 constitute a domain that is critical for receptor function and mediate ALV-J entry.IMPORTANCEchNHE1 is a cellular receptor of ALV-J, a retrovirus that causes infections in chickens and serious economic losses in the poultry industry. Until now, the domains determining the chNHE1 receptor function remained unknown. We demonstrate that chECL1 is critical for receptor function, with residues 28 to 39 constituting the minimal functional domain responsible for chNHE1 binding of ALV-J gp85 and efficiently mediating ALV-J cell entry. These residues are located in the membrane-proximal region of the N terminus of chECL1, suggesting that the binding site of ALV-J gp85 on chNHE1 is probably located on the apex of the molecule; the receptor-binding mode might be different from that of retroviruses. We also found that soluble chECL1, as well as huECL1 harboring chNHE1 residues 28 to 39, effectively blocked ALV-J infection. These findings contribute to a better understanding of the ALV-J infection mechanism and also provide new insights into the control strategies for ALV-J infection.


EBioMedicine ◽  
2016 ◽  
Vol 12 ◽  
pp. 196-207 ◽  
Author(s):  
Todd Bradley ◽  
Ashley Trama ◽  
Nancy Tumba ◽  
Elin Gray ◽  
Xiaozhi Lu ◽  
...  

2016 ◽  
Vol 473 (14) ◽  
pp. 2219-2224 ◽  
Author(s):  
Linxiang Yin ◽  
Jaewook Kim ◽  
Yeon-Kyun Shin

Tight regulation of neurotransmitter release by Ca2+ is critical in neurons, which requires suppression of spontaneous release. In the present study, we find that the complexin (Cpx) protein binds to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex to split the membrane-proximal part, whereby it inhibits spontaneous release.


Sign in / Sign up

Export Citation Format

Share Document