Blood–brain barrier and electromagnetic fields: Effects of scopolamine methylbromide on working memory after whole-body exposure to 2.45GHz microwaves in rats

2005 ◽  
Vol 161 (2) ◽  
pp. 229-237 ◽  
Author(s):  
Brigitte Cosquer ◽  
Anne Pereira de Vasconcelos ◽  
Jürg Fröhlich ◽  
Jean-Christophe Cassel
1972 ◽  
Vol 27 (5) ◽  
pp. 554-558b ◽  
Author(s):  
B. Schultze ◽  
N. Hörning ◽  
W. Maurer

The distribution in the organism of the mouse of free 3H-thymidine and 3H-cytidine was studied 1, 2½, 5 and 15 minutes after intravenous injection into normal and pregnant mice (20th day) using whole body autoradiography. The grain density measured over brain and fetus is 10 times smaller as compared to other tissues of the organism. This means that a blood brain barrier and placental barrier for thymidine and cytidine exists.


2018 ◽  
Vol 36 (6_suppl) ◽  
pp. 345-345 ◽  
Author(s):  
Christian Zurth ◽  
Steffen Sandmann ◽  
Dagmar Trummel ◽  
Dietrich Seidel ◽  
Hille Gieschen

345 Background: Darolutamide (ODM-201) (Daro) is an investigational oral and high-affinity androgen receptor antagonist. In preclinical studies, penetration of Daro through the blood–brain barrier (BBB) is negligible and in a retrospective safety analysis of the ARADES database for CNS-related adverse events (AEs), only 1 report of urinary incontinence was linked to Daro (Fizazi K, et al. 2015). Various clinical trials on enzalutamide (Enza) have reported CNS AEs (eg, seizure, falls, fatigue, pain). To understand the differences in CNS outcomes, we report an in vivo tissue distribution study with [14C]-labelled Enza and Daro in a head-to-head study in rats by means of quantitative whole-body autoradiography (QWBA). Methods: Male rats were orally dosed with 10 mg/kg [14C]Daro or [14C]Enza in the same formulation, administration volume, and radioactive dose. The animals were sacrificed at each drug’s specific tmax (time to reach the maximum concentration) in blood and brain and processed for QWBA. Results: At early time points [14C]Daro- and [14C]Enza-derived radioactivity was rapidly absorbed from the gastrointestinal tract and homogenously distributed throughout the body. By 8 h post dose, [14C]Daro was significantly eliminated from almost all organs/tissues, whereas [14C]Enza remained constant within the body. In contrast to [14C]Daro, high and persistent radioactivity was observed in brain for [14C]Enza. At tmax, the brain/blood-ratio of [14C]Enza was ~0.765, while [14C]Daro was about 10-fold lower at ~0.074. Conclusions: Results show that post dose, there was a 10-fold lower BBB penetration of [14C]Daro compared with [14C]Enza. At 8 h, [14C]Daro was rapidly eliminated and almost undetectable in all tissues, including brain, in contrast to [14C]Enza that remained constant. These data suggest that Daro might have a lower risk of inducing CNS-related AEs than Enza. Further clinical studies are ongoing.


1992 ◽  
Vol 649 (1 Biological Ef) ◽  
pp. 356-358 ◽  
Author(s):  
BERTIL R. R. PERSSON ◽  
LEIF G. SALFORD ◽  
ARNE BRUN ◽  
JACOB L. EBERHARDT ◽  
LARS MALMGREN

2000 ◽  
Vol 21 (5) ◽  
pp. 338-345 ◽  
Author(s):  
A. Schirmacher ◽  
S. Winters ◽  
S. Fischer ◽  
J. Goeke ◽  
H.-J. Galla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document