Estrous cycle stage influences on neuronal responsiveness to repeated anxiogenic stress in female rats

2011 ◽  
Vol 225 (1) ◽  
pp. 334-340 ◽  
Author(s):  
Adam J. Devall ◽  
Julia M. Santos ◽  
Thelma A. Lovick
2021 ◽  
Author(s):  
Emily N Hilz ◽  
Laura A Agee ◽  
Donyun S Jun ◽  
Marie H Monfils ◽  
Hongjoo J Lee

Renewal of appetitive behavior depends on the gonadal hormonal state of the female rat. In this experiment the effect of female rat estrous cycle stage on renewal of appetitive behaviors is replicated and extended upon to understand how endogenous hormonal states around the estrous cycle drive renewal at the neuronal population level. Estrous cycle stage (i.e., proestrus (P, high hormone) or metestrus/diestrus (M/D, low hormone)) was considered during two important learning and behavioral expression windows: at extinction training and during LTM/renewal testing. First, rats in P during context-dependent extinction training but in some other stage of the estrous cycle during long-term memory and renewal testing (Different) were shown to exhibit more renewal of conditioned foodcup (but not conditioned orienting) behavior compared to rats in other estrous cycle groups. Next, cellular compartment analysis of temporal activity using fluorescence in situ hybridization (catFISH) was used to examine immediate early gene activity of Arc mRNA in neuronal populations after distinct context-stimulus exposures (i.e., extinction and acquisition test contexts). Arc mRNA expression patterns were examined in the prefrontal cortex (PFC), amygdala, hippocampus (HPC), and paraventricular nucleus of the thalamus. P-different rats showed differential neuronal population activity in the infralimbic cortex of the PFC, the lateral amygdaloid nucleus, and both CA1 and CA3 regions of the dorsal HPC. In each region P-different rats exhibited more co-expression and less specificity of Arc mRNA compared to other hormonal groups, indicating that renewal of appetitive foodcup behavior induces Arc mRNA in overlapping neuronal populations in female rats.


2021 ◽  
pp. 113372
Author(s):  
Milene C. Carvalho ◽  
Karina Genaro ◽  
Christie Ramos Andrade Leite-Panissi ◽  
Thelma A. Lovick

2004 ◽  
Vol 45 (5) ◽  
pp. 330-338 ◽  
Author(s):  
Donna L Korol ◽  
Emily L Malin ◽  
Kristine A Borden ◽  
Rachel A Busby ◽  
Julia Couper-Leo

2005 ◽  
Vol 288 (6) ◽  
pp. R1486-R1491 ◽  
Author(s):  
Lisa A. Eckel ◽  
Heidi M. Rivera ◽  
Deann P. D. Atchley

The controls of food intake differ in male and female rats. Daily food intake is typically greater in male rats, relative to female rats, and a decrease in food intake, coincident with the estrous stage of the ovarian reproductive cycle, is well documented in female rats. This estrous-related decrease in food intake has been attributed to a transient increase in the female rat's sensitivity to satiety signals generated during feeding bouts. Here, we investigated whether sex or stage of the estrous cycle modulate the satiety signal generated by fenfluramine, a potent serotonin (5-HT) releasing agent. To examine this hypothesis, food intake was monitored in male, diestrous female, and estrous female rats after intraperitoneal injections of 0, 0.25, and 1.0 mg/kg d-fenfluramine. The lower dose of fenfluramine decreased food intake only in diestrous and estrous females, suggesting that the minimally effective anorectic dose of fenfluramine is lower in female rats, relative to male rats. Although the larger dose of fenfluramine decreased food intake in both sexes, the duration of anorexia was greater in diestrous and estrous female rats, relative to male rats. Moreover, the magnitude of the anorectic effect of the larger dose of fenfluramine was greatest in estrous rats, intermediate in diestrous rats, and least in male rats. Thus our findings indicate that the anorectic effect of fenfluramine is modulated by gonadal hormone status.


2014 ◽  
Vol 38 ◽  
pp. 208-209
Author(s):  
M.C.A. Rodrigues ◽  
A.R. Isaac ◽  
B.L.S. Andrade-da-Costa
Keyword(s):  

2017 ◽  
Vol 20 (1) ◽  
pp. 435 ◽  
Author(s):  
Jieyun Cao ◽  
Michael Ng ◽  
Melanie A Felmlee

Purpose: Monocarboxylate transporters (MCTs) are involved in the transport of monocarboxylates such as ketone bodies, lactate, and pharmaceutical agents. CD147 functions as an ancillary protein for MCT1 and MCT4 for plasma membrane trafficking. Sex differences in MCT1 and MCT4 have been observed in muscle and reproductive tissues; however, there is a paucity of information on MCT sex differences in tissues involved in drug disposition. The objective of the present study was to quantify hepatic MCT1, MCT4 and CD147 mRNA, total cellular and membrane protein expression in males, over the estrous cycle in females and in ovariectomized (OVX) females. Method: Liver samples were collected from females at the four estrous cycle stages (proestrus, estrus, metestrus, diestrus), OVX females and male Sprague-Dawley rats (N = 3 – 5). Estrus cycle stage of females was determined by vaginal lavage. mRNA and protein (total and membrane) expression of MCT1, MCT4 and CD147 was evaluated by qPCR and western blot analysis. Results: MCT1 mRNA and membrane protein expression varied with estrous cycle stage, with OVX females having higher expression than males, indicating that female sex hormones may play a role in MCT1 regulation. MCT4 membrane expression varied with estrous cycle stage with expression significantly lower than males. MCT4 membrane expression in OVX females was also lower than males, suggesting that androgens play a role in membrane expression of MCT4. Males had higher membrane CD147 expression, whereas there was no difference in whole cell protein and mRNA levels suggesting that androgens are involved in regulating CD147 membrane localization. Conclusions: This study demonstrates hepatic expression and membrane localization of MCT1, MCT4 and CD147 are regulated by sex hormones. Sex differences in hepatic MCT expression may lead to altered drug disposition, so it is critical to elucidate the underlying mechanisms in the sex hormone-dependent regulation of MCT expression. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


1988 ◽  
Vol 47 (5) ◽  
pp. 444-452 ◽  
Author(s):  
Kouji Nomura ◽  
Sumio Takahashi ◽  
Seiichiro Kawashima

2005 ◽  
Vol 161 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Stacy L. Sell ◽  
Ashlee M. Dillon ◽  
Kathryn A. Cunningham ◽  
Mary L. Thomas

Sign in / Sign up

Export Citation Format

Share Document