scholarly journals Hippocampal theta phase–contingent memory retrieval in delay and trace eyeblink conditioning

2018 ◽  
Vol 337 ◽  
pp. 264-270 ◽  
Author(s):  
Tomi Waselius ◽  
Eveliina Pöllänen ◽  
Jan Wikgren ◽  
Markku Penttonen ◽  
Miriam S. Nokia
2009 ◽  
Vol 123 (3) ◽  
pp. 631-640 ◽  
Author(s):  
Miriam S. Nokia ◽  
Markku Penttonen ◽  
Tapani Korhonen ◽  
Jan Wikgren

Author(s):  
Wei-Wei Zhang ◽  
Rong-Rong Li ◽  
Jie Zhang ◽  
Jie Yan ◽  
Qian-Hui Zhang ◽  
...  

AbstractWhile the hippocampus has been implicated in supporting the association among time-separated events, the underlying cellular mechanisms have not been fully clarified. Here, we combined in vivo multi-channel recording and optogenetics to investigate the activity of hippocampal interneurons in freely-moving mice performing a trace eyeblink conditioning (tEBC) task. We found that the hippocampal interneurons exhibited conditioned stimulus (CS)-evoked sustained activity, which predicted the performance of conditioned eyeblink responses (CRs) in the early acquisition of the tEBC. Consistent with this, greater proportions of hippocampal pyramidal cells showed CS-evoked decreased activity in the early acquisition of the tEBC. Moreover, optogenetic suppression of the sustained activity in hippocampal interneurons severely impaired acquisition of the tEBC. In contrast, suppression of the sustained activity of hippocampal interneurons had no effect on the performance of well-learned CRs. Our findings highlight the role of hippocampal interneurons in the tEBC, and point to a potential cellular mechanism subserving associative learning.


2011 ◽  
Vol 105 (5) ◽  
pp. 2213-2224 ◽  
Author(s):  
Ryan D. Darling ◽  
Kanako Takatsuki ◽  
Amy L. Griffin ◽  
Stephen D. Berry

Trace eyeblink classical conditioning (tEBCC) can be accelerated by making training trials contingent on the naturally generated hippocampal 3- to 7-Hz theta rhythm. However, it is not well-understood how the presence (or absence) of theta affects stimulus-driven changes within the hippocampus and how it correlates with patterns of neural activity in other essential trace conditioning structures, such as the medial prefrontal cortex (mPFC). In the present study, a brain-computer interface delivered paired or unpaired conditioning trials to rabbits during the explicit presence (T+) or absence (T−) of theta, yielding significantly faster behavioral learning in the T+-paired group. The stimulus-elicited hippocampal unit responses were larger and more rhythmic in the T+-paired group. This facilitation of unit responses was complemented by differences in the hippocampal local field potentials (LFP), with the T+-paired group demonstrating more coherent stimulus-evoked theta than T−-paired animals and both unpaired groups. mPFC unit responses in the rapid learning T+-paired group displayed a clear inhibitory/excitatory sequential pattern of response to the tone that was not seen in any other group. Furthermore, sustained mPFC unit excitation continued through the trace interval in T+animals but not in T−animals. Thus theta-contingent training is accompanied by 1) acceleration in behavioral learning, 2) enhancement of the hippocampal unit and LFP responses, and 3) enhancement of mPFC unit responses. Together, these data provide evidence that pretrial hippocampal state is related to enhanced neural activity in critical structures of the distributed network supporting the acquisition of tEBCC.


Sign in / Sign up

Export Citation Format

Share Document