Persistent antibody and T cell responses induced by HIV-1 DNA vaccine delivered by electroporation

2008 ◽  
Vol 366 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Anthony D. Cristillo ◽  
Deborah Weiss ◽  
Lauren Hudacik ◽  
Susana Restrepo ◽  
Lindsey Galmin ◽  
...  
PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e45267 ◽  
Author(s):  
Rafael Ribeiro Almeida ◽  
Daniela Santoro Rosa ◽  
Susan Pereira Ribeiro ◽  
Vinicius Canato Santana ◽  
Esper Georges Kallás ◽  
...  

2001 ◽  
Vol 75 (20) ◽  
pp. 9665-9670 ◽  
Author(s):  
Mohamed T. Shata ◽  
David M. Hone

ABSTRACT A prototype Shigella human immunodeficiency virus type 1 (HIV-1) gp120 DNA vaccine vector was constructed and evaluated for immunogenicity in a murine model. For comparative purposes, mice were also vaccinated with a vaccinia virus-env(vaccinia-env) vector or the gp120 DNA vaccine alone. Enumeration of the CD8+-T-cell responses to gp120 after vaccination using a gamma interferon enzyme-linked spot assay revealed that a single intranasal dose of the Shigella HIV-1 gp120 DNA vaccine vector elicited a CD8+ T-cell response to gp120, the magnitude of which was comparable to the sizes of the analogous responses to gp120 that developed in mice vaccinated intraperitoneally with the vaccinia-env vector or intramuscularly with the gp120 DNA vaccine. In addition, a single dose of the Shigella gp120 DNA vaccine vector afforded significant protection against a vaccinia-env challenge. Moreover, the number of vaccinia-env PFU recovered in mice vaccinated intranasally with the Shigella vector was about fivefold less than the number recovered from mice vaccinated intramuscularly with the gp120 DNA vaccine. Since theShigella vector did not express detectable levels of gp120, this report confirms that Shigella vectors are capable of delivering passenger DNA vaccines to host cells and inducing robust CD8+ T-cell responses to antigens expressed by the DNA vaccines. Furthermore, to our knowledge, this is the first documentation of antiviral protective immunity following vaccination with a live Shigella DNA vaccine vector.


2002 ◽  
Vol 168 (2) ◽  
pp. 562-568 ◽  
Author(s):  
Dan H. Barouch ◽  
Sampa Santra ◽  
Klara Tenner-Racz ◽  
Paul Racz ◽  
Marcelo J. Kuroda ◽  
...  

2012 ◽  
Vol 86 (8) ◽  
pp. 4082-4090 ◽  
Author(s):  
Maria L. Knudsen ◽  
Alice Mbewe-Mvula ◽  
Maximillian Rosario ◽  
Daniel X. Johansson ◽  
Maria Kakoulidou ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e84234 ◽  
Author(s):  
Kar Muthumani ◽  
Megan C. Wise ◽  
Kate E. Broderick ◽  
Natalie Hutnick ◽  
Jonathan Goodman ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 507 ◽  
Author(s):  
Christopher A. Gonelli ◽  
Georges Khoury ◽  
Rob J. Center ◽  
Damian F.J. Purcell

A prophylactic vaccine eliciting both broad neutralizing antibodies (bNAbs) to the HIV-1 envelope glycoprotein (Env) and strong T cell responses would be optimal for preventing HIV-1 transmissions. Replication incompetent HIV-1 virus-like particles (VLPs) offer the opportunity to present authentic-structured, virion-associated Env to elicit bNAbs, and also stimulate T cell responses. Here, we optimize our DNA vaccine plasmids as VLP expression vectors for efficient Env incorporation and budding. The original vector that was used in human trials inefficiently produced VLPs, but maximized safety by inactivating RNA genome packaging, enzyme functions that are required for integration into the host genome, and deleting accessory proteins Vif, Vpr, and Nef. These original DNA vaccine vectors generated VLPs with incomplete protease-mediated cleavage of Gag and were irregularly sized. Mutations to restore function within the defective genes revealed that several of the reverse transcriptase (RT) deletions mediated this immature phenotype. Here, we made efficient budding, protease-processed, and mature-form VLPs that resembled infectious virions by introducing alternative mutations that completely removed the RT domain, but preserved most other safety mutations. These VLPs, either expressed from DNA vectors in vivo or purified after expression in vitro, are potentially useful immunogens that can be used to elicit antibody responses that target Env on fully infectious HIV-1 virions.


Sign in / Sign up

Export Citation Format

Share Document