Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

2010 ◽  
Vol 393 (3) ◽  
pp. 377-383 ◽  
Author(s):  
Geetanjali B. Tomar ◽  
Rupesh K. Srivastava ◽  
Navita Gupta ◽  
Amruta P. Barhanpurkar ◽  
Satish T. Pote ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Da Yeon Lee ◽  
Sung Eun Lee ◽  
Do Hyeon Kwon ◽  
Saraswathy Nithiyanandam ◽  
Mi Ha Lee ◽  
...  

Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have been studied for their application to manage various neurological diseases, owing to their anti-inflammatory, immunomodulatory, paracrine, and antiapoptotic ability, as well as their homing capacity to specific regions of brain injury. Among mesenchymal stem cells, such as BM-MSCs, adipose-derived MSCs, and umbilical cord MSCs, BM-MSCs have many merits as cell therapeutic agents based on their widespread availability and relatively easy attainability and in vitro handling. For stem cell-based therapy with BM-MSCs, it is essential to perform ex vivo expansion as low numbers of MSCs are obtained in bone marrow aspirates. Depending on timing, before hBM-MSC transplantation into patients, after detaching them from the culture dish, cell viability, deformability, cell size, and membrane fluidity are decreased, whereas reactive oxygen species generation, lipid peroxidation, and cytosolic vacuoles are increased. Thus, the quality and freshness of hBM-MSCs decrease over time after detachment from the culture dish. Especially, for neurological disease cell therapy, the deformability of BM-MSCs is particularly important in the brain for the development of microvessels. As studies on the traditional characteristics of hBM-MSCs before transplantation into the brain are very limited, omics and machine learning approaches are needed to evaluate cell conditions with indepth and comprehensive analyses. Here, we provide an overview of hBM-MSCs, the application of these cells to various neurological diseases, and improvements in their quality and freshness based on integrated omics after detachment from the culture dish for successful cell therapy.


2013 ◽  
Vol 45 (1) ◽  
pp. 434-439 ◽  
Author(s):  
M. Alvarez-Viejo ◽  
Y. Menendez-Menendez ◽  
M.A. Blanco-Gelaz ◽  
A. Ferrero-Gutierrez ◽  
M.A. Fernandez-Rodriguez ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Subhash C. Juneja ◽  
Sowmya Viswanathan ◽  
Milan Ganguly ◽  
Christian Veillette

The procedure for aspiration of bone marrow from the femur of patients undergoing total knee arthroplasty (TKA) or total hip arthroplasty (THA) may vary from an OR (operating room) to OR based on the surgeon’s skill and may lead to varied extent of clotting of the marrow and this, in turn, presents difficulty in the isolation of mesenchymal stem cells (MSCs) from such clotted bone marrow. We present a simple detailed protocol for aspirating bone marrow from such patients, isolation, and characterization of MSCs from the aspirated bone marrow specimens and show that the bone marrow presented no clotting or exhibited minimal clotting. This represents an economical source and convenient source of MSCs from bone marrow for use in regenerative medicine. Also, we presented the detailed protocol and showed that the MSCs derived from such bone marrow specimens exhibited MSCs characteristics and generated micromass cartilages, the recipe for regenerative medicine for osteoarthritis. The protocols we presented can be used as standard operating procedures (SOPs) by researchers and clinicians.


2018 ◽  
Vol 53 (1) ◽  
pp. 174-177 ◽  
Author(s):  
Hester F. Shieh ◽  
Azra Ahmed ◽  
Sarah A. Tracy ◽  
David Zurakowski ◽  
Dario O. Fauza

2007 ◽  
Vol 56 (4) ◽  
pp. 1175-1186 ◽  
Author(s):  
Andrea Augello ◽  
Roberta Tasso ◽  
Simone Maria Negrini ◽  
Ranieri Cancedda ◽  
Giuseppina Pennesi

2017 ◽  
Vol 4 (S) ◽  
pp. 18
Author(s):  
Yu-Chen Hu

Regenerative medicine requires coordinated functions of cells, materials and appropriate signaling. Recent years have witnessed the marriage of regenerative medicine and gene delivery by which various genes encoding anabolic/catabolic proteins or RNA therapeutics are delivered into cells to potentiate the tissue regeneration.  This presentation will focus on the use of viral vectors for genetic modification of mesenchymal stem cells derived from bone marrow or adipose tissue for tissue regeneration. In particular, emphasis is placed on the applications of baculovirus, an emerging nonpathogenic gene delivery vector, for the delivery of various anabolic genes and miRNA mimics/sponges to repair tissues


2020 ◽  
Vol 48 (5) ◽  
pp. 1226-1235 ◽  
Author(s):  
Chih-Hao Chiu ◽  
Tsan-Hsuan Chang ◽  
Shih-Sheng Chang ◽  
Gwo-Jyh Chang ◽  
Alvin Chao-Yu Chen ◽  
...  

Background: Skeletal muscle injuries are very common in sports medicine. Conventional therapies have limited clinical efficacy. New treatment methods should be developed to allow athletes to return to play with better function. Purpose: To evaluate the in vitro differentiation potential of bone marrow–derived mesenchymal stem cells and the in vivo histologic and physiologic effects of mesenchymal stem cell therapy on muscle healing after contusion injury. Study Design: Controlled laboratory study. Methods: Bone marrow cells were flushed from both femurs of 5-week-old C57BL/6 mice to establish immortalized mesenchymal stem cell lines. A total of 36 mice aged 8 to 10 weeks were used to develop a muscle contusion model and were divided into 6 groups (6 mice/group) on the basis of the different dosages of IM2 cells to be injected (0, 1.25 × 105, and 2.5 × 105 cells with/without F-127 in 100 μL of phosphate-buffered saline). Histological analysis of muscle regeneration was performed, and the fast-twitch and tetanus strength of the muscle contractions was measured 28 days after muscle contusion injury, after injections of different doses of mesenchymal stem cells with or without the F-127 scaffold beginning 14 days after contusion injury. Results: The mesenchymal stem cell–treated muscles exhibited numerous regenerating myofibers. All the groups treated with mesenchymal stem cells (1.25 × 105 cells, 2.5 × 105 cells, 1.25 × 105 cells plus F-127, and 2.5 × 105 cells plus F-127) exhibited a significantly higher number of regenerating myofibers (mean ± SD: 111.6 ± 14.77, 133.4 ± 21.44, 221.89 ± 32.65, and 241.5 ± 25.95, respectively) as compared with the control group and the control with F-127 (69 ± 18.79 and 63.2 ± 18.98). The physiologic evaluation of fast-twitch and tetanus strength did not reveal differences between the age-matched uninjured group and the groups treated with various doses of mesenchymal stem cells 28 days after contusion. Significant differences were found between the control group and the groups treated with various doses of mesenchymal stem cells after muscle contusion. Conclusion: Mesenchymal stem cell therapy increased the number of regenerating myofibers and improved fast-twitch and tetanus muscle strength in a mouse model of muscle contusion. However, the rapid decay of transplanted mesenchymal stem cells suggests a paracrine effect of this action. Treatment with mesenchymal stem cells at various doses combined with the F-127 scaffold is a potential therapy for a muscle contusion. Clinical Relevance: Mesenchymal stem cell therapy has an effect on sports medicine because of its effects on myofiber regeneration and muscle strength after contusion injury.


2021 ◽  
pp. 1-9
Author(s):  
Zhang Zichang ◽  
Zhou Fan ◽  
Zheng Jianwei ◽  
Mu Junsheng ◽  
Bo Ping ◽  
...  

BACKGROUND: In stem cell therapy, due to the lack of an effective carrier, a large number of transplanted stem cells are lost and die. Therefore, finding a suitable carrier has become a further direction of stem cell therapy. OBJECTIVE: In research on the co-culture of polycaprolactone (PCL) with 1,1′-Dioctadecyl-3,3,3′,3′- tetramethylindocarbocyanine perchlorate (DiI) labeled bone marrow mesenchymal stem cells (BMSCs), we observe the effect of materials on the growth and proliferation of DiI labeled stem cells, and the effect of DiI labeling on patch preparation, so as to find a kind of biomaterial suitable for the growth and proliferation of BMSCs, and find a suitable cell carrier for stem cell therapy of myocardial infarction and in vivo tracing. METHODS: Clean grade Sprague Dawley rats were selected as experimental objects, BMSCs were isolated and cultured, and the surface markers were identified by flow cytometry. After the BMSCs were cultured for 3 passages, the BMSCs were stained with DiI dye, and the BMSCs DiI and PCL biomaterial film were co-cultured. After 24 hours, the cell growth was observed under fluorescence microscope, and fixed for scanning under electron microscope. The cell proliferation was detected by CCK-8 at 1, 4, 7, 10 days of culture. The measurement data conforming to normal distribution are expressed in the form of mean ± standard deviation (X¯± s). One way ANOVA was used for comparison among groups, LSD analysis was used for pairwise comparison. The difference was statistically significant (P < 0.05). RESULTS: BMSCs were strongly positive for CD90, CD44H, but negative for CD11b/c, CD45. Under fluorescence microscope, BMSCs DiI showed red light, fusiform or polygonal. Under the scanning electron microscope, the cell patch formed by co-culture of PCL film and DiI-BMSCs had a large number of cells on the surface and normal cell state. CCK-8 assay showed that the OD value on the first day was 0.330 ± 0.025; The OD value was 0.620 ± 0.012 on the 4th day, 1.033 ± 0.144 on the 7th day and 1.223 ± 0.133 on the 10th day. There was significant difference among the time points (P < 0.05). CONCLUSIONS: The cell patch made of PCL film and DiI labeled BMSCs can survive and proliferate on the surface, so it can be used as a scaffold material for stem cell therapy in vivo.


Sign in / Sign up

Export Citation Format

Share Document