Measles virus C protein facilitates transcription by the control of N protein-viral genomic RNA interaction in early phases of infection

2015 ◽  
Vol 463 (4) ◽  
pp. 1262-1266 ◽  
Author(s):  
Tomomi Nishie ◽  
Kyosuke Nagata
2005 ◽  
Vol 79 (22) ◽  
pp. 13848-13855 ◽  
Author(s):  
Ping-Kun Hsieh ◽  
Shin C. Chang ◽  
Chu-Chun Huang ◽  
Ting-Ting Lee ◽  
Ching-Wen Hsiao ◽  
...  

ABSTRACT The severe acute respiratory syndrome coronavirus (SARS-CoV) was recently identified as the etiology of SARS. The virus particle consists of four structural proteins: spike (S), small envelope (E), membrane (M), and nucleocapsid (N). Recognition of a specific sequence, termed the packaging signal (PS), by a virus N protein is often the first step in the assembly of viral RNA, but the molecular mechanisms involved in the assembly of SARS-CoV RNA are not clear. In this study, Vero E6 cells were cotransfected with plasmids encoding the four structural proteins of SARS-CoV. This generated virus-like particles (VLPs) of SARS-CoV that can be partially purified on a discontinuous sucrose gradient from the culture medium. The VLPs bearing all four of the structural proteins have a density of about 1.132 g/cm3. Western blot analysis of the culture medium from transfection experiments revealed that both E and M expressed alone could be released in sedimentable particles and that E and M proteins are likely to form VLPs when they are coexpressed. To examine the assembly of the viral genomic RNA, a plasmid representing the GFP-PS580 cDNA fragment encompassing the viral genomic RNA from nucleotides 19715 to 20294 inserted into the 3′ noncoding region of the green fluorescent protein (GFP) gene was constructed and applied to the cotransfection experiments with the four structural proteins. The SARS-CoV VLPs thus produced were designated VLP(GFP-PS580). Expression of GFP was detected in Vero E6 cells infected with the VLP(GFP-PS580), indicating that GFP-PS580 RNA can be assembled into the VLPs. Nevertheless, when Vero E6 cells were infected with VLPs produced in the absence of the viral N protein, no green fluorescence was visualized. These results indicate that N protein has an essential role in the packaging of SARS-CoV RNA. A filter binding assay and competition analysis further demonstrated that the N-terminal and C-terminal regions of the SARS-CoV N protein each contain a binding activity specific to the viral RNA. Deletions that presumably disrupt the structure of the N-terminal domain diminished its RNA-binding activity. The GFP-PS-containing SARS-CoV VLPs are powerful tools for investigating the tissue tropism and pathogenesis of SARS-CoV.


2013 ◽  
Vol 88 (1) ◽  
pp. 456-468 ◽  
Author(s):  
C. K. Pfaller ◽  
M. J. Radeke ◽  
R. Cattaneo ◽  
C. E. Samuel

2006 ◽  
Vol 80 (22) ◽  
pp. 11283-11292 ◽  
Author(s):  
M. A. Mir ◽  
B. Brown ◽  
B. Hjelle ◽  
W. A. Duran ◽  
A. T. Panganiban

ABSTRACT A key genomic characteristic that helps define Hantavirus as a genus of the family Bunyaviridae is the presence of distinctive terminal complementary nucleotides that promote the folding of the viral genomic segments into “panhandle” hairpin structures. The hantavirus nucleocapsid protein (N protein), which is encoded by the smallest of the three negative-sense genomic RNA segments, undergoes in vivo and in vitro trimerization. Trimeric hantavirus N protein specifically recognizes the panhandle structure formed by complementary base sequence of 5′ and 3′ ends of viral genomic RNA. N protein trimers from the Andes, Puumala, Prospect Hill, Seoul, and Sin Nombre viruses recognize their individual homologous panhandles as well as other hantavirus panhandles with high affinity. In contrast, these hantavirus N proteins bind with markedly reduced affinity to the panhandles from the genera Bunyavirus, Tospovirus, and Phlebovirus or Nairovirus. Interactions between most hantavirus N and heterologous hantavirus viral RNA panhandles are mediated by the nine terminal conserved nucleotides of the panhandle, whereas Sin Nombre virus N requires the first 23 nucleotides for high-affinity binding. Trimeric hantavirus N complexes undergo a prominent conformational change while interacting with panhandles from members of the genus Hantavirus but not while interacting with panhandles from viruses of other genera of the family Bunyaviridae. These data indicate that high-affinity interactions between trimeric N and hantavirus panhandles are conserved within the genus Hantavirus.


Virology ◽  
2001 ◽  
Vol 285 (1) ◽  
pp. 100-109 ◽  
Author(s):  
Greta L. Reutter ◽  
Case Cortese-Grogan ◽  
Julie Wilson ◽  
Sue A. Moyer

Virology ◽  
2011 ◽  
Vol 414 (1) ◽  
pp. 74-82 ◽  
Author(s):  
Shin-ichi Yokota ◽  
Tamaki Okabayashi ◽  
Nobuhiro Fujii

PLoS Biology ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. e3001425
Author(s):  
Amanda Jack ◽  
Luke S. Ferro ◽  
Michael J. Trnka ◽  
Eddie Wehri ◽  
Amrut Nadgir ◽  
...  

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection causes Coronavirus Disease 2019 (COVID-19), a pandemic that seriously threatens global health. SARS-CoV-2 propagates by packaging its RNA genome into membrane enclosures in host cells. The packaging of the viral genome into the nascent virion is mediated by the nucleocapsid (N) protein, but the underlying mechanism remains unclear. Here, we show that the N protein forms biomolecular condensates with viral genomic RNA both in vitro and in mammalian cells. While the N protein forms spherical assemblies with homopolymeric RNA substrates that do not form base pairing interactions, it forms asymmetric condensates with viral RNA strands. Cross-linking mass spectrometry (CLMS) identified a region that forms interactions between N proteins in condensates, and truncation of this region disrupts phase separation. We also identified small molecules that alter the formation of N protein condensates and inhibit the proliferation of SARS-CoV-2 in infected cells. These results suggest that the N protein may utilize biomolecular condensation to package the SARS-CoV-2 RNA genome into a viral particle.


2011 ◽  
Vol 86 (2) ◽  
pp. 796-805 ◽  
Author(s):  
K. M. J. Sparrer ◽  
C. K. Pfaller ◽  
K.-K. Conzelmann

2001 ◽  
Vol 75 (6) ◽  
pp. 2646-2652 ◽  
Author(s):  
William E. Severson ◽  
Xiaolin Xu ◽  
Colleen B. Jonsson

ABSTRACT The nucleocapsid (N) protein encapsidates both viral genomic RNA (vRNA) and the antigenomic RNA (cRNA), but not viral mRNA. Previous work has shown that the N protein has preference for vRNA, and this suggested the possibility of a cis-acting signal that could be used to initiate encapsidation for the S segment. To map thecis-acting determinants, several deletion RNA derivatives and synthetic oligoribonucleotides were constructed from the S segment of the Hantaan virus (HTNV) vRNA. N protein-RNA interactions were examined by UV cross-linking studies, filter-binding assays, and gel electrophoresis mobility shift assays to define the ability of each to bind HTNV N protein. The 5′ end of the S-segment vRNA was observed to be necessary and sufficient for the binding reaction. Modeling of the 5′ end of the vRNA revealed a possible stem-loop structure (SL) with a large single-stranded loop. We suggest that a specific interaction occurs between the N protein and sequences within this region to initiate encapsidation of the vRNAs.


Sign in / Sign up

Export Citation Format

Share Document