scholarly journals Crystal structure of Staphylococcus aureus exfoliative toxin D-like protein: Structural basis for the high specificity of exfoliative toxins

2015 ◽  
Vol 467 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Ricardo B. Mariutti ◽  
Tatiana A.C.B. Souza ◽  
Anwar Ullah ◽  
Icaro P. Caruso ◽  
Fábio R. de Moraes ◽  
...  
2007 ◽  
Vol 190 (3) ◽  
pp. 1108-1117 ◽  
Author(s):  
Taisuke Wakamatsu ◽  
Noriko Nakagawa ◽  
Seiki Kuramitsu ◽  
Ryoji Masui

ABSTRACT ADP-ribose (ADPR) is one of the main substrates of Nudix proteins. Among the eight Nudix proteins of Thermus thermophilus HB8, we previously determined the crystal structure of Ndx4, an ADPR pyrophosphatase (ADPRase). In this study we show that Ndx2 of T. thermophilus also preferentially hydrolyzes ADPR and flavin adenine dinucleotide and have determined its crystal structure. We have determined the structures of Ndx2 alone and in complex with Mg2+, with Mg2+ and AMP, and with Mg2+ and a nonhydrolyzable ADPR analogue. Although Ndx2 recognizes the AMP moiety in a manner similar to those for other ADPRases, it recognizes the terminal ribose in a distinct manner. The residues responsible for the recognition of the substrate in Ndx2 are not conserved among ADPRases. This may reflect the diversity in substrate specificity among ADPRases. Based on these results, we propose the classification of ADPRases into two types: ADPRase-I enzymes, which exhibit high specificity for ADPR; and ADPRase-II enzymes, which exhibit low specificity for ADPR. In the active site of the ternary complexes, three Mg2+ ions are coordinated to the side chains of conserved glutamate residues and water molecules. Substitution of Glu90 and Glu94 with glutamine suggests that these residues are essential for catalysis. These results suggest that ADPRase-I and ADPRase-II enzymes have nearly identical catalytic mechanisms but different mechanisms of substrate recognition.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sushant Kumar ◽  
Arunabh Athreya ◽  
Ashutosh Gulati ◽  
Rahul Mony Nair ◽  
Ithayaraja Mahendran ◽  
...  

AbstractTransporters play vital roles in acquiring antimicrobial resistance among pathogenic bacteria. In this study, we report the X-ray structure of NorC, a 14-transmembrane major facilitator superfamily member that is implicated in fluoroquinolone resistance in drug-resistant Staphylococcus aureus strains, at a resolution of 3.6 Å. The NorC structure was determined in complex with a single-domain camelid antibody that interacts at the extracellular face of the transporter and stabilizes it in an outward-open conformation. The complementarity determining regions of the antibody enter and block solvent access to the interior of the vestibule, thereby inhibiting alternating-access. NorC specifically interacts with an organic cation, tetraphenylphosphonium, although it does not demonstrate an ability to transport it. The interaction is compromised in the presence of NorC-antibody complex, consequently establishing a strategy to detect and block NorC and related transporters through the use of single-domain camelid antibodies.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Dominik Layer ◽  
Jürgen Kopp ◽  
Miriam Fontanillo ◽  
Maja Köhn ◽  
Karine Lapouge ◽  
...  

AbstractN-terminal acetylation is one of the most common protein modifications in eukaryotes and is carried out by N-terminal acetyltransferases (NATs). It plays important roles in protein homeostasis, localization, and interactions and is linked to various human diseases. NatB, one of the major co-translationally active NATs, is composed of the catalytic subunit Naa20 and the auxiliary subunit Naa25, and acetylates about 20% of the proteome. Here we show that NatB substrate specificity and catalytic mechanism are conserved among eukaryotes, and that Naa20 alone is able to acetylate NatB substrates in vitro. We show that Naa25 increases the Naa20 substrate affinity, and identify residues important for peptide binding and acetylation activity. We present the first Naa20 crystal structure in complex with the competitive inhibitor CoA-Ac-MDEL. Our findings demonstrate how Naa20 binds its substrates in the absence of Naa25 and support prospective endeavors to derive specific NAT inhibitors for drug development.


2017 ◽  
Vol 73 (11) ◽  
pp. 910-920 ◽  
Author(s):  
David Brent Langley ◽  
Ben Crossett ◽  
Peter Schofield ◽  
Jenny Jackson ◽  
Mahdi Zeraati ◽  
...  

Duck egg lysozyme (DEL) is a widely used model antigen owing to its capacity to bind with differential affinity to anti-chicken egg lysozyme antibodies. However, no structures of DEL have so far been reported, and the situation had been complicated by the presence of multiple isoforms and conflicting reports of primary sequence. Here, the structures of two DEL isoforms from the eggs of the commonly used Pekin duck (Anas platyrhynchos) are reported. Using structural analyses in combination with mass spectrometry, non-ambiguous DEL primary sequences are reported. Furthermore, the structures and sequences determined here enable rationalization of the binding affinity of DEL for well documented landmark anti-lysozyme antibodies.


1994 ◽  
Vol 91 (8) ◽  
pp. 2915-2919 ◽  
Author(s):  
K. R. Acharya ◽  
R. Shapiro ◽  
S. C. Allen ◽  
J. F. Riordan ◽  
B. L. Vallee

Sign in / Sign up

Export Citation Format

Share Document