Enhancement of anti-inflammatory and immunomodulatory effects of adipose-derived human mesenchymal stem cells by making uniform spheroid on the new nano-patterned plates

2021 ◽  
Vol 552 ◽  
pp. 164-169
Author(s):  
Sangho Lee ◽  
Hyo-Sop Kim ◽  
Byoung-Hoon Min ◽  
Byoung Geun Kim ◽  
Shin Ae Kim ◽  
...  
2020 ◽  
Author(s):  
Laurence Burroughs ◽  
Mahetab H. Amer ◽  
Matthew Vassey ◽  
Britta Koch ◽  
Grazziela P Figueredo ◽  
...  

AbstractHuman mesenchymal stem cells (hMSCs) are widely represented in ongoing regenerative medicine clinical trials due to their ease of autologous implantation. In bone regeneration, crosstalk between macrophages and hMSCs is critical with macrophages playing a key role in the recruitment and differentiation of hMSCs. However, engineered biomaterials able to both direct hMSC fate and modulate macrophage phenotype have not yet been identified. A novel combinatorial chemistry-microtopography screening platform, the ChemoTopoChip, is used to identify materials suitable for bone regeneration by screening with human immortalized mesenchymal stem cells (hiMSCs) and human macrophages. The osteoinduction achieved in hiMSCs cultured on the “hit” materials in basal media is comparable to that seen when cells are cultured in osteogenic media, illustrating that these materials offer a materials-induced alternative in bone-regenerative applications. These also exhibit immunomodulatory effects, concurrently polarizing macrophages towards a pro-healing phenotype. Control of cell response is achieved when both chemistry and topography are recruited to instruct the required cell phenotype, combining synergistically. The large library of materials reveals that the relative roles of microtopography and material chemistry are similar, and machine learning identifies key material and topographical features for cell-instruction.


Glia ◽  
2009 ◽  
Vol 57 (1) ◽  
pp. 13-23 ◽  
Author(s):  
You-Joung Kim ◽  
Hyun-Jung Park ◽  
Gwang Lee ◽  
Oh Young Bang ◽  
Young Hwan Ahn ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sonali Rawat ◽  
Vatsla Dadhwal ◽  
Sujata Mohanty

Abstract Background Human Mesenchymal Stem Cells (hMSCs) represent a promising cell source for cell-based therapy in autoimmune diseases and other degenerative disorders due to their immunosuppressive, anti-inflammatory and regenerative potentials. Belonging to a glucocorticoid family, Dexamethasone (Dex) is a powerful anti-inflammatory compound that is widely used as therapy in autoimmune disease conditions or allogeneic transplantation. However, minimal immunomodulatory effect of hMSCs may limit their therapeutic uses. Moreover, the effect of glucocorticoids on the immunomodulatory molecules or other regenerative properties of tissue-specific hMSCs remains unknown. Method Herein, we evaluated the in vitro effect of Dex at various dose concentrations and time intervals, 1000 ng/ml, 2000 ng/ml, 3000 ng/ml and 24 h, 48 h respectively, on the basic characteristics and immunomodulatory properties of Bone marrow derived MSC (BM-MSCs), Adipose tissue derived MSCs (AD-MSCs), Dental Pulp derived MSC (DP-MSCs) and Umbilical cord derived MSCs (UC-MSCs). Results The present study indicated that the concentration of Dex did not ramify the cellular morphology nor showed cytotoxicity as well as conserved the basic characteristics of tissue specific hMSCs including cell proliferation and surface marker profiling. However, quite interestingly it was observed that the stemness markers (Oct-4, Sox-2, Nanog and Klf-4) showed a significant upregulation in DP-MSCs and AD-MSCs followed by UC-MSCs and BM-MSCs. Additionally, immunomodulatory molecules, Prostaglandin E-2 (PGE-2), Indoleamine- 2,3-dioxygenase (IDO) and Human Leukocyte Antigen-G (HLA-G) were seen to be upregulated in a dose-dependent manner. Moreover, there was a differential response of tissue specific hMSCs after pre-conditioning with Dex during mixed lymphocyte reaction, wherein UC-MSCs and DP-MSCs showed enhanced immunosuppression as compared to AD-MSCs and BM-MSCs, thereby proving to be a better candidate for therapeutic applications in immune-related diseases. Conclusion Dex preconditioning improved the hMSCs immunomodulatory property and may have reduced the challenge associated with minimal potency and strengthen their therapeutic efficacy. Graphical Abstract Preconditioning of tissue specific hMSCs with dexamethasone biomanufacturers the enhanced potential hMSCs with better stemness and immunomodulatory properties for future therapeutics.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Elena Redondo-Castro ◽  
Catriona Cunningham ◽  
Jonjo Miller ◽  
Licia Martuscelli ◽  
Sarah Aoulad-Ali ◽  
...  

2017 ◽  
Vol 5 (34) ◽  
pp. 7153-7163 ◽  
Author(s):  
Yan Li ◽  
Zuyuan Luo ◽  
Xiao Xu ◽  
Yongliang Li ◽  
Siqi Zhang ◽  
...  

The combination of aspirin and an osteogenic BFP-1 peptide-decorated substrate significantly enhances immunomodulation and osteogenic differentiation of hMSCs.


Sign in / Sign up

Export Citation Format

Share Document