Reduced pressure gas phase bioreactor as a tool for stereoselective reduction catalyzed by alcohol dehydrogenase from Parvibaculum lavamentivorans

2015 ◽  
Vol 93 ◽  
pp. 11-16 ◽  
Author(s):  
Misaki Mizobuchi ◽  
Kazuhito Nagayama
1987 ◽  
Vol 42 (4) ◽  
pp. 489-494 ◽  
Author(s):  
Eckehard V. Dehmlow ◽  
Roland Kramer

Abstract The title compounds la-3c were prepared by stereoselective reduction of the respective dibromides. Pyrolysis gave allylic bromides (8, 9, 11) as primary and dienes (10, 12) as secondary products. Product ratios were independent of the stereochemistry of the starting materials. No differences of the rearrangement rates of the stereoisomers were observed in gas phase reactions of the derivatives of bicyclo[6.1.0]- and bicyclo[8.1.0]alkanes. With the larger bicyclo[10.1.0] derivatives, however, distinct differences in the thermal stability of cis-trans-isomers4c/5c or 2c/3c were found in condensed phase.


2014 ◽  
Vol 7 (1) ◽  
pp. 81-93 ◽  
Author(s):  
D. J. Miller ◽  
K. Sun ◽  
L. Tao ◽  
M. A. Khan ◽  
M. A. Zondlo

Abstract. We demonstrate a compact, open-path, quantum cascade-laser-based atmospheric ammonia sensor operating at 9.06 μm for high-sensitivity, high temporal resolution, ground-based measurements. Atmospheric ammonia (NH3) is a gas-phase precursor to fine particulate matter, with implications for air quality and climate change. Currently, NH3 sensing challenges have led to a lack of widespread in situ measurements. Our open-path sensor configuration minimizes sampling artifacts associated with NH3 surface adsorption onto inlet tubing and reduced pressure sampling cells, as well as condensed-phase partitioning ambiguities. Multi-harmonic wavelength modulation spectroscopy allows for selective and sensitive detection of atmospheric pressure-broadened absorption features. An in-line ethylene reference cell provides real-time calibration (±20% accuracy) and normalization for instrument drift under rapidly changing field conditions. The sensor has a sensitivity and noise-equivalent limit (1σ) of 0.15 ppbv NH3 at 10 Hz, a mass of ~ 5 kg and consumes ~ 50 W of electrical power. The total uncertainty in NH3 measurements is 0.20 ppbv NH3 ± 10%, based on a spectroscopic calibration method. Field performance of this open-path NH3 sensor is demonstrated, with 10 Hz time resolution and a large dynamic response for in situ NH3 measurements. This sensor provides the capabilities for improved in situ gas-phase NH3 sensing relevant for emission source characterization and flux measurements.


Author(s):  
J. Łabaj ◽  
L. Blacha ◽  
A. Smalcerz ◽  
B. Chmiela

Using a reduced pressure during the smelting and refining of alloys removes dissolved gasses, as well as impurities with a high vapor pressure. When smelting is carried out in vacuum induction furnaces, the intensification of the discussed processes is achieved by intensive mixing of the bath, as well as an enhanced mass exchange surface (liquid metal surface) due to the formation of a meniscus. This is due to the electromagnetic field applied to the liquid metal. This study reports the removal of arsenic from blister copper via refining in an induction vacuum furnace in the temperature range of 1423-1523 K, at operating pressures from 8 to 1333 Pa. The overall mass transfer coefficient kAs determined from the experimental data ranged from 9.99?10-7 to 1.65?10-5 ms-1. Arsenic elimination was largely controlled by mass transfer in the gas phase. The kinetic analysis indicated that the arsenic evaporation rate was controlled by the combination of both liquid and gas-phase mass transfer only at a pressure of 8 Pa.


2013 ◽  
Vol 6 (4) ◽  
pp. 7005-7039 ◽  
Author(s):  
D. J. Miller ◽  
K. Sun ◽  
L. Tao ◽  
M. A. Khan ◽  
M. A. Zondlo

Abstract. We demonstrate a compact, open-path, quantum cascade laser-based atmospheric ammonia sensor operating at 9.06 μm for high sensitivity, high temporal resolution, ground-based measurements. Atmospheric ammonia (NH3) is a gas-phase precursor to fine particulate matter, with implications for air quality and climate change. Currently, NH3 sensing challenges have led to a lack of widespread in-situ measurements. Our open-path sensor configuration avoids sampling artifacts associated with NH3 surface adsorption onto inlet tubing and reduced pressure sampling cells, as well as condensed-phase partitioning ambiguities. Multi-harmonic wavelength modulation spectroscopy allows for selective and sensitive detection of atmospheric-pressure broadened absorption features. An in-line ethylene reference cell provides real-time calibration (±20% accuracy) and normalization for instrument drift under rapidly changing field conditions. The sensor has a sensitivity and minimum detection limit of 0.15 ppbv NH3 at 10 Hz, a mass of ~ 5 kg and consumes ~ 50 W of electrical power. In-situ field performance of this open-path NH3 sensor is demonstrated, with 10 Hz time resolution and a large dynamic response for in-situ NH3 measurements. This sensor provides the capabilities for improved in-situ gas phase NH3 sensing relevant for emission source characterization and flux measurements.


1986 ◽  
Vol 8 (11) ◽  
pp. 783-784 ◽  
Author(s):  
S. Pulvin ◽  
M. D. Legoy ◽  
R. Lortie ◽  
M. Pensa ◽  
D. Thomas

2014 ◽  
Vol 70 (a1) ◽  
pp. C1009-C1009
Author(s):  
Tatsuhiro Kojima ◽  
Wanuk Choi ◽  
Masaki Kawano

Organic ligands and metal ions can produce several kinds of networks depending on experimental conditions, such as solvent, temperature, reaction speed, and so on.1, 2 While many MOF chemists have used solution phase reaction, recently some unique networking methods have been investigated, e.g. mechanochemical solid state reactions. Here we report a new method for single crystal growth of porous coordination networks via gas phase. In our previous work, we found that heating of interpenetrated network [(ZnI2)3(TPT)2]n (solvent) forms a crystalline powder, [(ZnI2)3(TPT)2]n (1, TPT = 2,4,6-tris(4-pyridyl)triazine).3 We determined a porous saddle-type structure of 1 by ab initio PXRD analysis. Interestingly, we could not prepare 1 by grinding and heating the starting powder materials of ZnI2 and TPT. Therefore, we attempted to prepare coordination networks via gas phase. On heating of ZnI2 and TPT together under reduced pressure in a glass ample at high temperature, single crystal growth of 1 was observed. The single crystal X-ray structure analysis revealed that 1 has the same structure as microcrystalline powder of 1. In gas phase, because there is no solvation effect, network topology is purely based on ligand interactivity and geometry of metal coordination. Therefore, saddle-type network is one of the possible patterns on the basis of geometry of only TPT and ZnI2 without guest molecules. To the best of our knowledge, this is the first example of single crystal growth of porous coordination network via gas phase. In summary, we successfully demonstrated the first gas phase single crystal growth of porous coordination network formation. In this presentation, we will discuss network design by gas phase reaction based on ligand interactivity focusing on weak intermolecular interaction.


Sign in / Sign up

Export Citation Format

Share Document