Characterization of novel alcohol dehydrogenase of Devosia riboflavina involved in stereoselective reduction of 3-pyrrolidinone derivatives

2008 ◽  
Vol 51 (3-4) ◽  
pp. 73-80 ◽  
Author(s):  
Noriyuki Kizaki ◽  
Yoshihiko Yasohara ◽  
Nobuo Nagashima ◽  
Junzo Hasegawa
Author(s):  
Akriti Mishra ◽  
Kamini Mishra ◽  
Dipayan Bose ◽  
Abhijit Chakrabarti ◽  
Puspendu Kumar Das

Characterization of nanoparticle protein corona has gained tremendous importance lately. The parameters which quantitatively establish a specific nanoparticle-protein interaction need to be measured accurately since good quality data is necessary...


2001 ◽  
Vol 268 (10) ◽  
pp. 3062-3068 ◽  
Author(s):  
John van der Oost ◽  
Wilfried G. B. Voorhorst ◽  
Servé W. M. Kengen ◽  
Ans C. M. Geerling ◽  
Vincent Wittenhorst ◽  
...  

1997 ◽  
Vol 26 (6) ◽  
pp. 525-526 ◽  
Author(s):  
Masaki Torimura ◽  
Kenji Kano ◽  
Tokuji Ikeda ◽  
Teruhisa Ueda

Genetics ◽  
1987 ◽  
Vol 116 (4) ◽  
pp. 523-530
Author(s):  
Aileen K W Taguchi ◽  
Elton T Young

ABSTRACT The alcohol dehydrogenase II isozyme (enzyme, ADHII; structural gene, ADH2) of the yeast, Saccharomyces cerevisiae, is under stringent carbon catabolite control. This cytoplasmic isozyme exhibits negligible activity during growth in media containing fermentable carbon sources such as glucose and is maximal during growth on nonfermentable carbon sources. A recessive mutation, adr6-1, and possibly two other alleles at this locus, were selected for their ability to decrease Ty-activated ADH2-6 c expression. The adr6-1 mutation led to decreased ADHII activity in both ADH2-6c and ADH2+ strains, and to decreased levels of ADH2 mRNA. Ty transcription and the expression of two other carbon catabolite regulated enzymes, isocitrate lyase and malate dehydrogenase, were unaffected by the adr6-1 mutation. adr6-1/adr6-1strains were defective for sporulation, indicating that adr6 mutations may have pleiotropic effects. The sporulation defect was not a consequence of decreased ADH activity. Since the ADH2-6c mutation is due to insertion of a 5.6-kb Ty element at the TATAA box, it appears that the ADR6+-dependent ADHII activity required ADH2 sequences 3′ to or including the TATAA box. The ADH2 upstream activating sequence (UAS) was probably not required. The ADR6 locus was unlinked to the ADR1 gene which encodes another trans-acting element required for ADH2 expression.


Genetics ◽  
1982 ◽  
Vol 102 (3) ◽  
pp. 421-435
Author(s):  
M Ashburner ◽  
C S Aaron ◽  
S Tsubota

ABSTRACT Of 31 X-ray-induced and 2 spontaneous Adh null mutations selected for resistance to pentenol (Aaron 1979), 21 are deletions, including Adh and one or more neighboring loci. By contrast, none of 13 EMS-induced Adhn mutations are deletions. On average, the size of these X-ray-induced deletions is shorter than that of 12 formaldehyde-induced Adhn deletions (O'Donnell, Mandell, Krauss and Sofer 1977). Both the X-ray- and formaldehyde-induced deletions show a nonrandom distribution of break points in region 34D to 35D of chromosome arm 2L. Some of the deletions display particular genetic properties associated with one of their end points.


Sign in / Sign up

Export Citation Format

Share Document