scholarly journals Removal of arsenic from liquid blister copper during remelting in an induction vacuum furnace

Author(s):  
J. Łabaj ◽  
L. Blacha ◽  
A. Smalcerz ◽  
B. Chmiela

Using a reduced pressure during the smelting and refining of alloys removes dissolved gasses, as well as impurities with a high vapor pressure. When smelting is carried out in vacuum induction furnaces, the intensification of the discussed processes is achieved by intensive mixing of the bath, as well as an enhanced mass exchange surface (liquid metal surface) due to the formation of a meniscus. This is due to the electromagnetic field applied to the liquid metal. This study reports the removal of arsenic from blister copper via refining in an induction vacuum furnace in the temperature range of 1423-1523 K, at operating pressures from 8 to 1333 Pa. The overall mass transfer coefficient kAs determined from the experimental data ranged from 9.99?10-7 to 1.65?10-5 ms-1. Arsenic elimination was largely controlled by mass transfer in the gas phase. The kinetic analysis indicated that the arsenic evaporation rate was controlled by the combination of both liquid and gas-phase mass transfer only at a pressure of 8 Pa.

1973 ◽  
Vol 4 (5) ◽  
pp. 1359-1364 ◽  
Author(s):  
A. Chatterjee ◽  
A. V. Bradshaw
Keyword(s):  

1999 ◽  
Vol 39 (4) ◽  
pp. 85-92 ◽  
Author(s):  
J. Behrendt

A mathematical model for nitrification in an aerated fixed bed reactor has been developed. This model is based on material balances in the bulk liquid, gas phase and in the biofilm area. The fixed bed is divided into a number of cells according to the reduced remixing behaviour. A fixed bed cell consists of 4 compartments: the support, the gas phase, the bulk liquid phase and the stagnant volume containing the biofilm. In the stagnant volume the biological transmutation of the ammonia is located. The transport phenomena are modelled with mass transfer formulations so that the balances could be formulated as an initial value problem. The results of the simulation and experiments are compared.


Author(s):  
P. D. Lobanov ◽  
O. N. Kashinsky ◽  
A. S. Kurdyumov ◽  
N. A. Pribaturin

An experimental study of dynamic processes during pulsed gas injection into quiescent liquids was performed. Both water and low melting temperature metal alloy were used as test liquids. Air and argon were used as gas phase. The test sections were vertical cylindrical columns 25 and 68 mm inner diameter. Measurements of flow parameters during gas injection were performed. Water – air experiments were performed at room temperature, the temperature of liquid metal alloy was 135 deg C. Time records of pressure in the liquid and in gas phase above the liquid were obtained. Measurements of liquid temperature and level of liquid surface were performed. It was shown that at pulse gas injection into liquid metal high amplitude pressure fluctuation may arise. Also the fluctuation variation of the free surface of the liquid may appear which are connected with the oscillations of the gas volume. Experimental data obtained may be used for verification & validation of modern CFD codes.


1991 ◽  
Vol 251-252 ◽  
pp. 951-954 ◽  
Author(s):  
S. Iarlori ◽  
F. Ercolessi ◽  
E. Tosatti

1987 ◽  
Vol 109 (2) ◽  
pp. 89-93 ◽  
Author(s):  
P. Gandhidasan ◽  
M. Rifat Ullah ◽  
C. F. Kettleborough

Heat and mass transfer analysis between a desiccant-air contact system in a packed tower has been studied in application to air dehumidification employing liquid desiccant, namely calcium chloride. Ceramic 2 in. Raschig rings are used as the packing material. To predict the tower performance, a steady-state model which considers the heat and mass transfer resistances of the gas phase and the mass transfer resistance of the liquid phase is developed. The governing equations are solved on a digital computer to simulate the performance of the tower. The various parameters such as the effect of liquid concentration and temperature, air temperature and humidity and the rates of flow of air and liquid affecting the tower performance have been discussed.


AIChE Journal ◽  
1955 ◽  
Vol 1 (1) ◽  
pp. 9-19 ◽  
Author(s):  
E. J. Lynch ◽  
C. R. Wilke

1959 ◽  
Vol 11 (2) ◽  
pp. 130-137 ◽  
Author(s):  
N.A. Warner
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document