Robustness and microbial consortia succession of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process for mature landfill leachate treatment under low temperature

2018 ◽  
Vol 132 ◽  
pp. 112-121 ◽  
Author(s):  
Yingmu Wang ◽  
Benzhou Gong ◽  
Ziyuan Lin ◽  
Jiale Wang ◽  
Jianbing Zhang ◽  
...  
2011 ◽  
Vol 46 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Susana Cortez ◽  
Pilar Teixeira ◽  
Rosário Oliveira ◽  
Manuel Mota

2010 ◽  
Vol 22 (4) ◽  
pp. 481-485 ◽  
Author(s):  
Hongwei Sun ◽  
Qing Yang ◽  
Yongzhen Peng ◽  
Xiaoning Shi ◽  
Shuying Wang ◽  
...  

2019 ◽  
Vol 118 ◽  
pp. 04017
Author(s):  
Yuan-Yuan Zhao ◽  
You-Ze Xu ◽  
Shuang Zhou ◽  
Jiao-Mei Liu ◽  
Yingxiang Cheng ◽  
...  

In order to verify the feasibility of Fe/C microelectrolysis-Fenton oxidation for mature landfill leachate treatment in industrial application, this study conducted the treatment processes at full-scale by physicochemical and spectral characterization. The full-scale studies showed that 48.17% of the dissolved organic carbon (DOC) and 42.27% of the dissolved organic nitrogen (DON) were removed by the microelectrolysis-Fenton oxidation process, respectively. Spectra analysis further suggested that the mature leachate was mainly composed of tryptophan-like and fulvic-like compounds. The combination of microelectrolysis and Fenton oxidation efficiently decomposed the aromatic C=C into carboxyl-C and decreased the molecular size of DOC, resulting in a dramatic reduce (97.1%-98.3%) of the fluorescence intensity. The DON removal by microelectrolysis-Fenton oxidation likely associated with the NH2-decomposition of tryptophan-like and aromatic compounds into NO3-N. The tryptophan-like compounds may play a dominant role in Ba binding, while Pb and Cd were likely bound to both the tryptophan-like and fulvic-like compounds. Above 60% of the heavy metals were removed in the microelectrolysis-Fenton oxidation section. Results above confirmed the effectiveness of Fe/C microelectrolysis-Fenton oxidation for mature landfill leachate treatment in industrial application.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6425
Author(s):  
Javier Tejera ◽  
Daphne Hermosilla ◽  
Antonio Gascó ◽  
Carlos Negro ◽  
Ángeles Blanco

This study focused on the reduction of the treatment cost of mature landfill leachate (LL) by enhancing the coagulation pre-treatment before a UVA-LED photo-Fenton process. A more efficient advanced coagulation pretreatment was designed by combining conventional coagulation (CC) and electro-coagulation (EC). Regardless of the order in which the two coagulations were applied, the combination achieved more than 73% color removal, 80% COD removal, and 27% SUVA removal. However, the coagulation order had a great influence on both final pH and total dissolved iron, which were key parameters for the UVA-LED photo-Fenton post-treatment. CC (pH = 5; 2 g L−1 of FeCl36H2O) followed by EC (pH = 5; 10 mA cm−2) resulted in a pH of 6.4 and 100 mg L−1 of dissolved iron, whereas EC (pH = 4; 10 mA cm−2) followed by CC (pH = 6; 1 g L−1 FeCl36H2O) led to a final pH of 3.4 and 210 mg L−1 dissolved iron. This last combination was therefore considered better for the posterior photo-Fenton treatment. Results at the best cost-efficient [H2O2]:COD ratio of 1.063 showed a high treatment efficiency, namely the removal of 99% of the color, 89% of the COD, and 60% of the SUVA. Conductivity was reduced by 17%, and biodegradability increased to BOD5:COD = 0.40. With this proposed treatment, a final COD of only 453 mg O2 L−1 was obtained at a treatment cost of EUR 3.42 kg COD−1.


Sign in / Sign up

Export Citation Format

Share Document