Influence of seasonal temperature change on autotrophic nitrogen removal for mature landfill leachate treatment with high-ammonia by partial nitrification-Anammox process

2021 ◽  
Vol 102 ◽  
pp. 291-300 ◽  
Author(s):  
Xiang Li ◽  
Ming-yu Lu ◽  
Yong Huang ◽  
Yi Yuan ◽  
Yan Yuan
2010 ◽  
Vol 113-116 ◽  
pp. 662-665
Author(s):  
Wen De Tian ◽  
Kyoung Jin An ◽  
Zhi Wei Li

This study focused on the feasibility of autotrophic nitrogen removal to treat high ammonia leachate, using combined partial Nitritation and Anammox process. In partial nitritation reactor, the optimal operation condition was found with influent ammonium concentration of 1200 mg/L, DO about 3 mg/L, HRT 3 days and temperature about 31°C at the ratio of NO2-N / NH4-N effluent kept at 1.1, which is a prerequisite for the application of Anammox. In Anammox reactor, more than 85% ammonium is removed at HRT 8 days, temperature 28±1°C, and pH 8. The removal rate of nitrogen and COD in combined partial Nitritation and Anammox process are 90% and 74%, respectively. Thus, a combined process of partial nitritation and a subsequent Anammox could be an alternative solution for ammonium removal for leachate.


1998 ◽  
Vol 25 (5) ◽  
pp. 854-863 ◽  
Author(s):  
D M Shiskowski ◽  
D S Mavinic

This bench-scale study investigated the nitrogen-removal capabilities of two different biological process configurations treating methanogenic-state landfill leachate containing up to 1200 mg N/L of ammonia. The first configuration was a pre-denitrification system known as the modified Ludzack-Ettinger (MLE) process. Large clarifier sludge recycle flows, set to yield clarifier recycle ratios of 7:1 and 8:1, were evaluated as a means to reduce effluent NOx concentrations. A pre- and post-denitrification system, known as the four-stage Bardenpho process, was the second configuration evaluated. The MLE systems (20 day aerobic solids retention time (SRT)) were capable of producing effluent containing about 50 mg N/L of ammonia and 200-235 mg N/L of total inorganic nitrogen (ammonia + NOx) when treating leachate containing approximately 1200 mg N/L of ammonia. In contrast, effluent from the four-stage Bardenpho system contained less than 1 mg N/L of ammonia and 15 mg N/L of NOx, when treating 1100 mg N/L ammonia leachate. An aerobic number 1 SRT of 20 days (total aerobic SRT approximately equal to 40 days) was used with aerobic number 1 and clarifier sludge recycle ratios of 4:1 and 3:1, respectively. The ammonia-removal potential of both systems was clearly demonstrated but each system also showed certain disadvantages, characteristic of each process.Key words: ammonia-N, anoxic denitrification, leachate treatment, nitrification, pre-denitrification.


1995 ◽  
Vol 22 (5) ◽  
pp. 992-1000 ◽  
Author(s):  
J. Paul Henderson ◽  
James W. Atwater

A pre-denitrifying anaerobic filter and a rotating biological contactor (RBC) were used to remove nitrogen from a high ammonia landfill leachate collected from a municipal and industrial solid waste landfill in Kaohsiung, Taiwan, Republic of China. The research indicated that greater than 95% ammonia removal from high ammonia-N (2140 mg/L) leachate can be achieved with RBC ammonia-N loading rates up to 1.5 g/(m2∙d). At RBC loading rates of 1.5–3.0 g/(m2∙d), ammonia removal ranged from 80% to 90%. Nitrogen removal averaged 66%, including an estimated 54% removal in the RBC. Nitrogen removal in the RBC was the result of either simultaneous nitrification and denitrification or air stripping of ammonia in combination with nitrification. Both alkalinity consumption and COD removal results support the explanation of simultaneous nitrification and denitrification (potentially aerobic denitrification); but since RBC off-gasses were not monitored, neither theory can be confirmed. The high nitrogen removal in the RBC suggests that for this leachate the anaerobic filter was not required for ammonia and nitrogen removal. BOD and COD removal averaged 92% and 49% respectively. Key words: landfill, leachate, treatment, ammonia, rotating biological contactor (RBC), nitrification, denitrification.


Sign in / Sign up

Export Citation Format

Share Document