The effectiveness of conservation measures to enhance nest survival in a meadow bird suffering from anthropogenic nest loss

2012 ◽  
Vol 146 (1) ◽  
pp. 197-203 ◽  
Author(s):  
Martin U. Grüebler ◽  
Heidi Schuler ◽  
Petra Horch ◽  
Reto Spaar
Author(s):  
O.S. Bezuglova ◽  

Rostov Region belongs to the highly protected natural territories characterized by the continuous plowing. There territories are the only reserves with the soils preserved in their natural state. However, these areas often lack detailed information about the soils quality and composition. Surveying soils on these territories is crucial for determination of their basic physical and chemical properties. The resulted compilation of soil maps could lay a foundation for creating the Red Book of Soils and the formation of a section in the soil-geographical database of the Russian Federation. Subsequently, such information can be used as a background data for the main types of soils in the region. It will be also valuable during monitoring and justification of conservation measures.


2007 ◽  
Vol 71 (6) ◽  
pp. 1773-1783 ◽  
Author(s):  
BRENDAN J. MOYNAHAN ◽  
MARK S. LINDBERG ◽  
JAY J. ROTELLA ◽  
JACK WARD THOMAS

Oryx ◽  
2021 ◽  
pp. 1-9
Author(s):  
Johannes H. Fischer ◽  
Heiko U. Wittmer ◽  
Graeme A. Taylor ◽  
Igor Debski ◽  
Doug P. Armstrong

Abstract The population of the recently-described Whenua Hou diving petrel Pelecanoides whenuahouensis comprises c. 200 adults that all breed in a single 0.018 km2 colony in a dune system vulnerable to erosion. The species would therefore benefit from the establishment of a second breeding population through a translocation. However, given the small size of the source population, it is essential that translocations are informed by carefully targeted monitoring data. We therefore modelled nest survival at the remaining population in relation to potential drivers (distance to sea and burrow density of conspecifics and a competitor) across three breeding seasons with varying climatic conditions as a result of the southern oscillation cycle. We also documented breeding phenology and burrow attendance, and measured chicks, to generate growth curves. We estimated egg survival at 0.686, chick survival at 0.890, overall nest survival at 0.612, and found no indication that nest survival was affected by distance to sea or burrow density. Whenua Hou diving petrels laid eggs in mid October, eggs hatched in late November, and chicks fledged in mid January at c. 86% of adult weight. Burrow attendance (i.e. feeds) decreased from 0.94 to 0.65 visits per night as chicks approached fledging. Nest survival and breeding biology were largely consistent among years despite variation in climate. Nest survival estimates will facilitate predictions about future population trends and suitability of prospective translocation sites. Knowledge of breeding phenology will inform the timing of collection of live chicks for translocation, and patterns of burrow attendance combined with growth curves will structure hand-rearing protocols. A tuhinga whakarāpopoto (te reo Māori abstract) can be found in the Supplementary material.


2020 ◽  
pp. 1-10
Author(s):  
VOLKER SALEWSKI ◽  
LUIS SCHMIDT

Summary Identifying the fate of birds’ nests and the causes of breeding failure is often crucial for the development of conservation strategies for threatened species. However, collecting these data by repeatedly visiting nests might itself contribute to nest failure or bias. To solve this dilemma, automatic cameras have increasingly been used as a time-efficient means for nest monitoring. Here, we consider whether the use of cameras itself may influence hatching success of nests of the Black-tailed Godwit Limosa limosa at two long-term study sites in northern Germany. Annually between 2013 and 2019, cameras were used to monitor godwit nests. In 2014 and 2019, nests were randomly equipped with cameras or not, and nest survival checked independently of the cameras. Nest-survival models indicated that survival probabilities varied between years, sites and with time of the season, but were unaffected by the presence of cameras. Even though predation is the main cause of hatching failure in our study system, we conclude that predators did not learn to associate cameras with food either when the cameras were initially installed or after they had been used for several years. Cameras were thus an effective and non-deleterious tool to collect data for conservation in this case. As other bird species may react differently to cameras at their nests, and as other sets of predators may differ in their ability to associate cameras with food, the effect of cameras on breeding success should be carefully monitored when they are used in a new study system.


Sign in / Sign up

Export Citation Format

Share Document