Future extinction risk of wetland plants is higher from individual patch loss than total area reduction

2017 ◽  
Vol 209 ◽  
pp. 27-33 ◽  
Author(s):  
David C. Deane ◽  
Damien A. Fordham ◽  
Fangliang He ◽  
Corey J.A. Bradshaw
2020 ◽  
Vol 38 (2) ◽  
pp. 70-73
Author(s):  
Anna M. Branduzzi ◽  
Christopher D. Barton ◽  
Amy Lovell

2010 ◽  
Vol 30 (4) ◽  
pp. 400-405 ◽  
Author(s):  
Xian-Yan QIN ◽  
Yong-Hong XIE ◽  
Xin-Sheng CHEN

1998 ◽  
Vol 151 (5) ◽  
pp. 441
Author(s):  
Saether ◽  
Engen ◽  
Islam ◽  
McCleery ◽  
Perrins

Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Most species now have fragmented distributions, often with adverse genetic consequences. The genetic impacts of population fragmentation depend critically upon gene flow among fragments and their effective sizes. Fragmentation with cessation of gene flow is highly harmful in the long term, leading to greater inbreeding, increased loss of genetic diversity, decreased likelihood of evolutionary adaptation and elevated extinction risk, when compared to a single population of the same total size. The consequences of fragmentation with limited gene flow typically lie between those for a large population with random mating and isolated population fragments with no gene flow.


1999 ◽  
Vol 65 (6) ◽  
pp. 2758-2761 ◽  
Author(s):  
David Emerson ◽  
Johanna V. Weiss ◽  
J. Patrick Megonigal

ABSTRACT The presence of Fe-oxidizing bacteria in the rhizosphere of four different species of wetland plants was investigated in a diverse wetland environment that had Fe(II) concentrations ranging from tens to hundreds of micromoles per liter and a pH range of 3.5 to 6.8. Enrichments for neutrophilic, putatively lithotrophic Fe-oxidizing bacteria were successful on roots from all four species; acidophilic Fe-oxidizing bacteria were enriched only on roots from plants whose root systems were exposed to soil solutions with a pH of <4. InSagittaria australis there was a positive correlation (P < 0.01) between cell numbers and the total amount of Fe present; the same correlation was not found for Leersia oryzoides. These results present the first evidence for culturable Fe-oxidizing bacteria associated with Fe-plaque in the rhizosphere.


Sign in / Sign up

Export Citation Format

Share Document