Extinction Risk and Lack of Evolutionary Rescue under Resource Depletion or Area Reduction

2017 ◽  
Vol 190 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Steinar Engen ◽  
Bernt-Erik Sæther
2021 ◽  
Vol 17 (12) ◽  
Author(s):  
Philip B. Greenspoon ◽  
Hamish G. Spencer

Rapid environmental changes are putting numerous species at risk of extinction. For migration-limited species, persistence depends on either phenotypic plasticity or evolutionary adaptation (evolutionary rescue). Current theory on evolutionary rescue typically assumes linear environmental change. Yet accelerating environmental change may pose a bigger threat. Here, we present a model of a species encountering an environment with accelerating or decelerating change, to which it can adapt through evolution or phenotypic plasticity (within-generational or transgenerational). We show that unless either form of plasticity is sufficiently strong or adaptive genetic variation is sufficiently plentiful, accelerating or decelerating environmental change increases extinction risk compared to linear environmental change for the same mean rate of environmental change.


Author(s):  
Colin Carlson ◽  
Kevin Burgio ◽  
Tad Dallas ◽  
Wayne Getz

The sixth mass extinction poses an unparalleled quantitative challenge to conservation biologists. Mathematicians and ecologists alike face the problem of developing models that can scale predictions of extinction rates from populations to the level of a species, or even to an entire ecosystem. We review some of the most basic stochastic and analytical methods of calculating extinction risk at different scales, including population viability analysis, stochastic metapopulation occupancy models, and the species area relationship. We also consider two major extensions of theory: the possibility of evolutionary rescue from extinction in a changing environment, and the posthumous assignment of an extinction date from sighting records. In the case of the latter, we provide a new example using data on Spix's macaw (Cyanopsitta spixii), the "rarest bird in the world," to demonstrate the challenges associated with extinction date research.


2019 ◽  
Author(s):  
Youssef Yacine ◽  
Korinna T. Allhoff ◽  
Avril Weinbach ◽  
Nicolas Loeuille

AbstractGlobal warming is severely impacting ecosystems and threatening ecosystem services as well as human well-being. While some species face extinction risk, several studies suggest the possibility that fast evolution may allow species to adapt and survive in spite of environmental changes.We assess how such evolutionary rescue extends to multitrophic communities and whether evolution systematically preserves biodiversity under global warming.More precisely, we expose simulated trophic networks of co-evolving consumers to warming under different evolutionary scenarios, which allows us to assess the effect of evolution on diversity maintenance. We also investigate how the evolution of body mass and feeding preference affects coexistence within a simplified consumer-resource module.Our simulations predict that the long-term diversity loss triggered by warming is considerably higher in scenarios where evolution is slowed down or switched off completely, indicating that eco-evolutionary feedback indeed helps to preserve biodiversity. However, even with fast evolution, food webs still experience vast disruptions in their structure and functioning. Reversing warming may thus not be sufficient to restore previous structures.Our findings highlight how the interaction between evolutionary rescue and changes in trophic structures constrains ecosystem responses to warming with important implications for conservation and management policies.


2018 ◽  
Author(s):  
Colin Carlson ◽  
Kevin Burgio ◽  
Tad Dallas ◽  
Wayne Getz

The sixth mass extinction poses an unparalleled quantitative challenge to conservation biologists. Mathematicians and ecologists alike face the problem of developing models that can scale predictions of extinction rates from populations to the level of a species, or even to an entire ecosystem. We review some of the most basic stochastic and analytical methods of calculating extinction risk at different scales, including population viability analysis, stochastic metapopulation occupancy models, and the species area relationship. We also consider two major extensions of theory: the possibility of evolutionary rescue from extinction in a changing environment, and the posthumous assignment of an extinction date from sighting records. In the case of the latter, we provide an example using data on Spix's macaw (Cyanopsitta spixii), the "rarest bird in the world," to demonstrate the challenges associated with extinction date research.


2017 ◽  
Vol 209 ◽  
pp. 27-33 ◽  
Author(s):  
David C. Deane ◽  
Damien A. Fordham ◽  
Fangliang He ◽  
Corey J.A. Bradshaw

2016 ◽  
Vol 283 (1839) ◽  
pp. 20161690 ◽  
Author(s):  
Jaime Ashander ◽  
Luis-Miguel Chevin ◽  
Marissa L. Baskett

Phenotypic plasticity and its evolution may help evolutionary rescue in a novel and stressful environment, especially if environmental novelty reveals cryptic genetic variation that enables the evolution of increased plasticity. However, the environmental stochasticity ubiquitous in natural systems may alter these predictions, because high plasticity may amplify phenotype–environment mismatches. Although previous studies have highlighted this potential detrimental effect of plasticity in stochastic environments, they have not investigated how it affects extinction risk in the context of evolutionary rescue and with evolving plasticity. We investigate this question here by integrating stochastic demography with quantitative genetic theory in a model with simultaneous change in the mean and predictability (temporal autocorrelation) of the environment. We develop an approximate prediction of long-term persistence under the new pattern of environmental fluctuations, and compare it with numerical simulations for short- and long-term extinction risk. We find that reduced predictability increases extinction risk and reduces persistence because it increases stochastic load during rescue. This understanding of how stochastic demography, phenotypic plasticity, and evolution interact when evolution acts on cryptic genetic variation revealed in a novel environment can inform expectations for invasions, extinctions, or the emergence of chemical resistance in pests.


2018 ◽  
Author(s):  
Colin Carlson ◽  
Kevin Burgio ◽  
Tad Dallas ◽  
Wayne Getz

The sixth mass extinction poses an unparalleled quantitative challenge to conservation biologists. Mathematicians and ecologists alike face the problem of developing models that can scale predictions of extinction rates from populations to the level of a species, or even to an entire ecosystem. We review some of the most basic stochastic and analytical methods of calculating extinction risk at different scales, including population viability analysis, stochastic metapopulation occupancy models, and the species area relationship. We also consider two major extensions of theory: the possibility of evolutionary rescue from extinction in a changing environment, and the posthumous assignment of an extinction date from sighting records. In the case of the latter, we provide an example using data on Spix's macaw (Cyanopsitta spixii), the "rarest bird in the world," to demonstrate the challenges associated with extinction date research.


2020 ◽  
Vol 287 (1932) ◽  
pp. 20201144
Author(s):  
James H. Peniston ◽  
Michael Barfield ◽  
Andrew Gonzalez ◽  
Robert D. Holt

Substantial environmental change can force a population onto a path towards extinction, but under some conditions, adaptation by natural selection can rescue the population and allow it to persist. This process, known as evolutionary rescue, is believed to be less likely to occur with greater magnitudes of random environmental fluctuations because environmental variation decreases expected population size, increases variance in population size and increases evolutionary lag. However, previous studies of evolutionary rescue in fluctuating environments have only considered scenarios in which evolutionary rescue was likely to occur. We extend these studies to assess how baseline extinction risk (which we manipulated via changes in the initial population size, degree of environmental change or mutation rate) influences the effects of environmental variation on evolutionary rescue following an abrupt environmental change. Using a combination of analytical models and stochastic simulations, we show that autocorrelated environmental variation hinders evolutionary rescue in low-extinction-risk scenarios but facilitates rescue in high-risk scenarios. In these high-risk cases, the chance of a run of good years counteracts the otherwise negative effects of environmental variation on evolutionary demography. These findings can inform the development of effective conservation practices that consider evolutionary responses to abrupt environmental changes.


2013 ◽  
Vol 368 (1610) ◽  
pp. 20120081 ◽  
Author(s):  
Regis Ferriere ◽  
Stéphane Legendre

Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk. Even a single trait substitution can suffice to degrade population viability drastically at once and cause ‘evolutionary suicide’. In a changing environment, a population may track a viable evolutionary attractor that leads to evolutionary suicide, a phenomenon called ‘evolutionary trapping’. Evolutionary trapping and suicide are commonly observed in adaptive dynamics models in which the smooth variation of traits causes catastrophic changes in ecological state. In the face of trapping and suicide, evolutionary rescue requires that the population overcome evolutionary threats generated by the adaptive process itself. Evolutionary repellors play an important role in determining how variation in environmental conditions correlates with the occurrence of evolutionary trapping and suicide, and what evolutionary pathways rescue may follow. In contrast with standard predictions of evolutionary rescue theory, low genetic variation may attenuate the threat of evolutionary suicide and small population sizes may facilitate escape from evolutionary traps.


2015 ◽  
Author(s):  
Robert Unckless ◽  
Andrew Clark

Many evolutionary processes result in sufficiently low mean fitness that they pose a risk of species extinction. Sex-ratio meiotic drive was recognized by W.D. Hamilton (1967) to pose such a risk, because as the driving sex chromosome becomes common, the opposite sex becomes rare. We expand on Hamilton’s classic model by allowing for the escape from extinction due to evolution of suppressors of X and Y drivers. We explore differences in the two systems in their probability of escape from extinction. Several novel conclusions are evident, including a) that extinction time scales approximately with the log of population size so that even large populations may go extinct quickly, b) extinction risk is driven by the relationship between female fecundity and drive strength, c) anisogamy and the fact that X and Y drive result in sex ratios skewed in opposite directions, mean systems with Y drive are much more likely to go extinct than those with X drive, and d) suppressors are most likely to become established when the strength of drive is intermediate, since weak drive leads to weak selection for suppression and strong drive leads to rapid extinction.


Sign in / Sign up

Export Citation Format

Share Document