Biological control of the potato dry rot caused by Fusarium species using PGPR strains

2009 ◽  
Vol 50 (2) ◽  
pp. 194-198 ◽  
Author(s):  
Kotan Recep ◽  
Sahin Fikrettin ◽  
Demirci Erkol ◽  
Eken Cafer
Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1194-1194 ◽  
Author(s):  
E. Gachango ◽  
W. Kirk ◽  
L. Hanson ◽  
A. Rojas ◽  
P. Tumbalam

Fusarium dry rot of potato (Solanum tuberosum L.) is a postharvest disease caused by several Fusarium species and is of worldwide importance. Thirteen species of Fusarium have been implicated in fungal dry rots of potatoes worldwide. Among them, eight species have been reported in the northern United States (2). In Michigan potato production, F. sambucinum was the predominant species reported to be affecting seed potato in storage and causing seed piece decay after planting (3). Some previous identifications of F. sambucinum as dry rot may have been F. torulosum since F. torulosum was previously classified within F. sambucinum (4). To further investigate this, dry rot symptomatic tubers were collected from Michigan seed lots in the summers of 2009 and 2010. Small sections from the margins of necrotic regions were cut with a scalpel, surface sterilized in 0.5% sodium hypochlorite for 10 s, rinsed twice in sterile distilled water, and blotted with sterile filter paper. The tissue pieces were plated on half-strength potato dextrose agar (PDA) amended with 0.5 g/liter of streptomycin sulfate and incubated at 23°C for 5 to 7 days. Cultures resembling Fusarium species were transferred onto water agar, and single hyphal tips from actively growing isolates were removed and plated either on carnation leaf agar (CLA) or on half-strength PDA to generate pure cultures. Among the Fusarium isolates obtained, five isolates were identified as F. torulosum (GenBank Accessions Nos. JF803658–JF803660). Identification was based on colony and conidial morphology on PDA and CLA, respectively. These features included slow growth (2.8 ± 0.2 cm in 5 days), white mycelium that became pigmented with age, narrow concentric rings, red or white pigmentation on agar, macroconidia (32.4 ± 0.4 μm average length) with five septa, a pointed apical cell, and a foot-shaped basal cell (4). The identity was confirmed through DNA extraction followed by amplification and sequencing of the translation elongation factor (EF-1α) gene region (1). The Fusarium-ID.v (1) and the NCBI database were used to obtain the closest match (99%) to previously sequenced materials (GenBank Accession No. AJ543611). Pathogenicity testing was done on disease-free potato tubers cv. Red Norland. Tubers were surface sterilized for 10 min in 0.5% sodium hypochlorite and rinsed twice in distilled water. Three tubers per isolate were injected with 20 μl of a conidial suspension (106 conidia/ml) made from F. torulosum cultures grown on PDA for 7 to 10 days. Control tubers were injected with 20 μl of sterile distilled water. All tubers inoculated with F. torulosum developed typical potato dry rot symptoms consisting of a brown and dry decay. There was no disease incidence on the control tubers. F. torulosum was reisolated from the symptomatic tubers. To our knowledge, this is the first report of F. torulosum causing potato dry rot in the United States. References: (1) D. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (2) L. E. Hanson et al. Phytopathology 86:378, 1996. (3) M. L. Lacy and R. Hammerschmidt. Fusarium dry rot. Extension Bulletin. Retrieved from http://web1.msue.msu.edu/msue/iac/onlinepubs/pubs/E/E2448POT , 23 May 2010. (4) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Wiley-Blackwell, Hoboken, NJ, 2006.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1063
Author(s):  
Laura Gálvez ◽  
Daniel Palmero

In recent years, different postharvest alterations have been detected in garlic. In many cases, the symptoms are not well defined, or the etiology is unknown, which further complicates the selection of bulbs during postharvest handling. To characterize the different symptoms of bulb rot caused by fungi, garlic bulb samples were collected from six Spanish provinces in two consecutive years. Eight different fungal species were identified. The most prevalent postharvest disease was Fusarium dry rot (56.1%), which was associated with six Fusarium species. Fusarium proliferatum was detected in more than 85% of symptomatic cloves, followed by F. oxysporum and F. solani. Pathogenicity tests did not show a significant correlation between virulence and mycotoxin production (fumonisins, beauvericin, and moniliformin) or the mycelial growth rate. Penicillium allii was detected in 12.2% of the samples; it was greatly influenced by the harvest season and garlic cultivar, and three different morphotypes were identified. Stemphylium vesicarium and Embellisia allii were pathogenic to wounded cloves. Some of the isolated fungal species produce highly toxic mycotoxins, which may have a negative impact on human health. This work is the first to determine the quantitative importance, pathogenicity, and virulence of the causative agents of postharvest garlic rot in Spain.


Author(s):  
Letizia Mondani ◽  
Giorgio Chiusa ◽  
Paola Battilani

AbstractThe aim of the study was to test in vitro and in vivo the efficacy of triazoles and biocontrol agents (BCAs) against Fusarium proliferatum and F. oxysporum, the former signaled as the main causal agent of garlic dry rot and the latter also involved. In vitro trials were organized using potato dextrose agar with added chemicals or BCAs inoculated with selected F. proliferatum and F. oxysporum. Garlic cloves were dipped before sowing in suspensions prepared with the fungicides showing the best performances in vitro; then they were dipped in Fusaria suspension before sowing. In in vitro trials, the maximum Fusaria growth inhibition was performed by Propiconazole + Prochloraz (100%), followed by Tebuconazole (88.9%). BCAs showed great capacity to control Fusaria, with a maximum growth inhibition of 80% (Trichoderma harzianum + T. gamsii). In vivo bacterial BCAs showed a similar capacity to control F. proliferatum and F. oxysporum compared to chemical products (mean of severity index 18.6% and 11.7%, respectively). In vivo results confirmed the in vitro performances, except for Trichoderma, which had the worst performances in vivo. Therefore, the results are preliminary but promising for future field application.


2021 ◽  
Vol 113 ◽  
pp. 101601
Author(s):  
Jie Ren ◽  
Jie Tong ◽  
Peihua Li ◽  
Xiaoqing Huang ◽  
Pan Dong ◽  
...  

2016 ◽  
Vol 94 (3) ◽  
pp. 266-269 ◽  
Author(s):  
Virupaksh U Patil ◽  
Vanishree G. ◽  
Vinay Sagar ◽  
SK Chakrabarti

Sign in / Sign up

Export Citation Format

Share Document