Reversion of multidrug resistance by a pH-responsive cyclodextrin-derived nanomedicine in drug resistant cancer cells

Biomaterials ◽  
2015 ◽  
Vol 67 ◽  
pp. 169-182 ◽  
Author(s):  
Qing Shi ◽  
Lin Zhang ◽  
Mengyu Liu ◽  
Xuelin Zhang ◽  
Xiangjun Zhang ◽  
...  
2021 ◽  
Author(s):  
Yupei Ma ◽  
Du Li ◽  
Yunchao Xiao ◽  
Zhijun OuYang ◽  
Mingwu Shen ◽  
...  

Conventional cancer chemotherapy is facing difficulties in improving the bioavailability, overcoming the severe adverse side effect of chemotherapeutics and reversing the multidrug resistance of cancer cells. To address these challenges,...


Author(s):  
Wipob Suttana ◽  
Chatubhong Singharachai ◽  
Rawiwan Charoensup ◽  
Narawadee Rujanapun ◽  
Chutima Suya

Chemotherapy can cause multidrug resistance in cancer cells and is cytotoxic to normal cells. Discovering natural bioactive compounds that are not cytotoxic to normal cells but inhibit proliferation and induce apoptosis in drug- sensitive and drug-resistant cancer cells could overcome these drawbacks of chemotherapy. This study investigated the antiproliferative effects of crude extracts of Benchalokawichian (BLW) remedy and its herbal components against drug-sensitive and drug-resistant cancer cells, cytotoxicity of the extracts toward normal cells, and their ability to induce apoptosis and cell cycle arrest in drug-sensitive and drug-resistant cancer cells. The extracts exhibited antiproliferative activity against doxorubicin-sensitive and doxorubicin-resistant erythromyelogenous leukemic cells (K562 and K562/adr). Tiliacora triandra root, BLW, and Harrisonia perforata root extracts displayed an IC50 of 77.00 ± 1.30, 79.33 ± 1.33, and 87.67 ± 0.67 µg/mL, respectively, against K562 cells. In contrast, Clerodendrum petasites, T. triandra, and H. perforata root extracts displayed the lowest IC50 against K562/adr cells (68.89 ± 0.75, 78.33 ± 0.69, and 86.78 ± 1.92 µg/mL, respectively). The resistance factor of the extracts was lower than that of doxorubicin, indicating that the extracts could overcome the multidrug resistance of cancer cells. Importantly, the extracts were negligibly cytotoxic to peripheral mononuclear cells, indicating minimal adverse effects in normal cells. In addition, these extracts induced apoptosis of K562 and K562/adr cells and caused cell cycle arrest at the G0/G1 phase in K562 cells. Keywords: Antiproliferative, Apoptosis, Benchalokawichian, Cell cycle, Multidrug resistance


Author(s):  
Jiaqi Xiao ◽  
Meixiang Gao ◽  
Qiang Diao ◽  
Feng Gao

: Drug resistance including multidrug resistance resulting from different defensive mechanisms in cancer cells is the leading cause of the failure about the cancer therapy, making it an urgent need to develop more effective anticancer agents. Chalcones, widely distributed in nature, could act on diverse enzymes and receptors in cancer cells. Accordingly, chalcone derivatives possess potential activity against various cancers including drug-resistant even multidrug-resistant cancer. This review outlines the recent development of chalcone derivatives with potential activity against drug-resistant cancers covering articles published between 2010 and 2020, so as to facilitate further rational design of more effective candidate.


2017 ◽  
Vol 53 (58) ◽  
pp. 8184-8187 ◽  
Author(s):  
Parikshit Moitra ◽  
Krishan Kumar ◽  
Sourav Sarkar ◽  
Paturu Kondaiah ◽  
Wei Duan ◽  
...  

A new pH-sensitive co-liposomal formulation was developed which could efficiently transport doxorubicin across the DOX-resistant cancer cells.


2018 ◽  
Vol 181 ◽  
pp. 841-850 ◽  
Author(s):  
Urarika Luesakul ◽  
Songchan Puthong ◽  
Nouri Neamati ◽  
Nongnuj Muangsin

Sign in / Sign up

Export Citation Format

Share Document