Synthesis, in vitro alpha-glucosidase inhibitory potential of benzimidazole bearing bis-Schiff bases and their molecular docking study

2020 ◽  
Vol 94 ◽  
pp. 103394 ◽  
Author(s):  
Fazal Rahim ◽  
Khalid Zaman ◽  
Muhammad Taha ◽  
Hayat Ullah ◽  
Mehreen Ghufran ◽  
...  
2019 ◽  
Vol 89 ◽  
pp. 103024 ◽  
Author(s):  
Khalid Zaman ◽  
Fazal Rahim ◽  
Muhammad Taha ◽  
Hayat Ullah ◽  
Abdul Wadood ◽  
...  

2018 ◽  
Vol 78 ◽  
pp. 201-209 ◽  
Author(s):  
Muhammad Tariq Javid ◽  
Fazal Rahim ◽  
Muhammad Taha ◽  
Haseeb Ur Rehman ◽  
Mohsan Nawaz ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Taha ◽  
Fazal Rahim ◽  
Hayat Ullah ◽  
Abdul Wadood ◽  
Rai Khalid Farooq ◽  
...  

2020 ◽  
Vol 28 ◽  
pp. 100396 ◽  
Author(s):  
Imad Uddin ◽  
Hayat Ullah ◽  
Attiya Bibi ◽  
Muhammad Taha ◽  
Fahad Khan ◽  
...  

Author(s):  
Gejalakshmi S. ◽  
Harikrishnan N. ◽  
Anas S. Mohameid

Background: Diabetes mellitus is a metabolic condition characterized by elevated blood glucose levels in the bloodstream. It occurs due to the inadequate amount of insulin secreted in the body or resistance of insulin receptors. Objective: In the present study, for its effect on alpha-amylase and alpha-glucosidase enzymes, Oroxylum indicuma flavone glycoside was assessed using in-vitro assays by removing the respective enzymes from whole wheat and barley in conjunction with in-silico analysis. Method: in-vitro alpha amylase inhibitory activity and in-vitro alpha glucosidase inhibitory activity was performed using acarbose as a standard drug. The molecular docking study was performed using Schrodinger (Maestro V 11.5) software. The parameters glide score, Lipinski rule for drug likeliness, bioactive scoring and ADME properties were assessed in the docking study. In addition, baicalein's antioxidant function was assessed using DPPH assay, nitric oxide scavenging activity. The cytotoxicity of Oroxylum indicumwas evaluated using the Brine shrimp lethality assay. Results: The alpha-amylase assay performed showed IC50 value of 48.40 µg/ml for Oroxylum indicumwhereas alpha-glucosidase assay showed an IC50 value of 16.03 µg/ml. Oroxylum indicumshows the glide score of-5.565 with 5EOF and glide score of -5.339 with 5NN8 in the molecular docking study. The highest percentage of DPPH radical scavenging activity and nitrous oxide scavenging activity were found to be.27% at160 µg/ml and 50.02% at the concentrations of 160 µg/ml respectively. Conclusion: Based on further in vivo and clinical trials, Oroxylum indicummay be used for the management of hyperglycaemia.


2021 ◽  
Author(s):  
Halil Ibrahim Guler ◽  
Fulya Ay Sal ◽  
Zehra Can ◽  
Yakup Kara ◽  
Oktay Yildiz ◽  
...  

ABSTRACTPropolis is a multi-functional bee product with a rich in polyphenols. In this study, the inhibition effect of Anatolian propolis against SARS coronavirus-2 (SARS CoV-2) was investigated asin vitroandin silico. Raw and commercial of propolis samples were used in the study and it was found that both of were rich in caffeic acid, p-coumaric acid, ferulic acid, t-cinnamic acid, hesperetin, chrysin, pinocembrin and caffeic acid phenethyl ester (CAPE) by HPLC-UV analysis. The ethanolic propolis extracts (EPE) were used in the screening ELISA test against the spike S1 protein (SARS Cov-2): ACE-2 inhibition KIT forin vitrostudy. Binding energy constants of these polyphenols to the CoV-2 Spike S1 RBD and ACE-2proteinwere calculated separately as molecular docking study using AutoDock 4.2 molecular docking software. In addition, pharmacokinetics and drug-likeness properties of these eight polyphenols were calculated according to the SwissADME tool. Binding energy constant of pinocembrin was the highest for both of the receptors, followed by chrysin, CAPE and hesperetin.In silicoADME behavior of the eight polyphenols were found potential ability to work effectively as novel drugs. The findings of both studies showed that propolis has a high inhibitory potential against Covid-19 virus. However, further studies are needed.


Author(s):  
Muhammad Taha ◽  
Foziah J. Alshamrani ◽  
Fazal Rahim ◽  
Shawkat Hayat ◽  
Hayat Ullah ◽  
...  

New class of triazinoindole bearing thiosemicarbazide (1-25) was synthesized and evaluated for α-glucosidase inhibitory potential. All synthesized analogues exhibited excellent inhibitory potential having IC50 values ranging from 1.30 ± 0.01 to 35.80 ± 0.80 µM when compared with the standard acarbose having IC50 value 38.60 ± 0.20 µM. Among series the analogues 1 and 23 was found the most potent having IC50 values 1.30 ± 0.05 and 1.30 ± 0.01 µM respectively. Structure activity relationship (SAR) was mainly based upon by bring about difference of substituents on phenyl rings. To confirm the binding interactions, molecular docking study was performed. Synthesized analogues were characterized through HREI-MS, 1H and 13C-NMR analysis.


2020 ◽  
Vol 16 (7) ◽  
pp. 892-902 ◽  
Author(s):  
Aida Iraji ◽  
Mahsima Khoshneviszadeh ◽  
Pegah Bakhshizadeh ◽  
Najmeh Edraki ◽  
Mehdi Khoshneviszadeh

Background: Melanogenesis is a process of melanin synthesis, which is a primary response for the pigmentation of human skin. Tyrosinase is a key enzyme, which catalyzes a ratelimiting step of the melanin formation. Natural products have shown potent inhibitors, but some of these possess toxicity. Numerous synthetic inhibitors have been developed in recent years may lead to the potent anti– tyrosinase agents. Objective: A number of 4-hydroxy-N'-methylenebenzohydrazide analogues with related structure to chalcone and tyrosine were constructed with various substituents at the benzyl ring of the molecule and evaluate as a tyrosinase inhibitor. In addition, computational analysis and metal chelating potential have been evaluated. Methods: Design and synthesized compounds were evaluated for activity against mushroom tyrosinase. The metal chelating capacity of the potent compound was examined using the mole ratio method. Molecular docking of the synthesized compounds was carried out into the tyrosine active site. Results: Novel 4-hydroxy-N'-methylenebenzohydrazide derivatives were synthesized. The two compounds 4c and 4g showed an IC50 near the positive control, led to a drastic inhibition of tyrosinase. Confirming in vitro results were performed via the molecular docking analysis demonstrating hydrogen bound interactions of potent compounds with histatidine-Cu+2 residues with in the active site. Kinetic study of compound 4g showed competitive inhibition towards tyrosinase. Metal chelating assay indicates the mole fraction of 1:2 stoichiometry of the 4g-Cu2+ complex. Conclusion: The findings in the present study demonstrate that 4-Hydroxy-N'- methylenebenzohydrazide scaffold could be regarded as a bioactive core inhibitor of tyrosinase and can be used as an inspiration for further studies in this area.


Sign in / Sign up

Export Citation Format

Share Document