scholarly journals Synthesis of novel Triazinoindole-Based-Thiourea Hybrid: α-Glucosidase Inhibitors and Their Molecular Docking Study

Author(s):  
Muhammad Taha ◽  
Foziah J. Alshamrani ◽  
Fazal Rahim ◽  
Shawkat Hayat ◽  
Hayat Ullah ◽  
...  

New class of triazinoindole bearing thiosemicarbazide (1-25) was synthesized and evaluated for α-glucosidase inhibitory potential. All synthesized analogues exhibited excellent inhibitory potential having IC50 values ranging from 1.30 ± 0.01 to 35.80 ± 0.80 µM when compared with the standard acarbose having IC50 value 38.60 ± 0.20 µM. Among series the analogues 1 and 23 was found the most potent having IC50 values 1.30 ± 0.05 and 1.30 ± 0.01 µM respectively. Structure activity relationship (SAR) was mainly based upon by bring about difference of substituents on phenyl rings. To confirm the binding interactions, molecular docking study was performed. Synthesized analogues were characterized through HREI-MS, 1H and 13C-NMR analysis.

Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3819 ◽  
Author(s):  
Taha ◽  
Alshamrani ◽  
Rahim ◽  
Hayat ◽  
Ullah ◽  
...  

A new class of triazinoindole-bearing thiosemicarbazides (1–25) was synthesized and evaluated for α-glucosidase inhibitory potential. All synthesized analogs exhibited excellent inhibitory potential, with IC50 values ranging from 1.30 ± 0.01 to 35.80 ± 0.80 µM when compared to standard acarbose (an IC50 value of 38.60 ± 0.20 µM). Among the series, analogs 1 and 23 were found to be the most potent, with IC50 values of 1.30 ± 0.05 and 1.30 ± 0.01 µM, respectively. The structure–activity relationship (SAR) was mainly based upon bringing about different substituents on the phenyl rings. To confirm the binding interactions, a molecular docking study was performed.


Author(s):  
Muhammad Taha ◽  
Fazal Rahim ◽  
Shawkat Hayat ◽  
Manikandan Selvaraj ◽  
Rai Khalid Farooq ◽  
...  

In the search of potent α-amylase inhibitors, we have synthesized seventeen derivatives of 2-mercaptobenzimidazole bearing sulfonamide (1-17) and evaluated for their α-amylase inhibitory potential. All compounds display a variable degree of α-amylase activity having IC50 values ranging between 0.90 ± 0.05 to 11.20 ± 0.30 µM when compared with the standard drug acarbose having IC50 value 1.70 ± 0.10 µM. Compound 1, 2, 11, 12 and 14 having IC50 values 1.40 ± 0.10, 1.30 ± 0.05, 0.90 ± 0.05, 1.60 ± 0.05 and 1.60 ± 0.10 µM respectively were found many folds better than the standard drug acarbose. The remaining analogs showed good inhibitory potentials. All the synthesized compounds were characterized by HREI-MS, 1H and 13C-NMR. Structure activity relationship (SAR) has been recognized for all newly synthesized analogs. Through molecular docking study, binding mode of active analogs with α-amylase enzyme was confirmed.


Author(s):  
Gejalakshmi S. ◽  
Harikrishnan N. ◽  
Anas S. Mohameid

Background: Diabetes mellitus is a metabolic condition characterized by elevated blood glucose levels in the bloodstream. It occurs due to the inadequate amount of insulin secreted in the body or resistance of insulin receptors. Objective: In the present study, for its effect on alpha-amylase and alpha-glucosidase enzymes, Oroxylum indicuma flavone glycoside was assessed using in-vitro assays by removing the respective enzymes from whole wheat and barley in conjunction with in-silico analysis. Method: in-vitro alpha amylase inhibitory activity and in-vitro alpha glucosidase inhibitory activity was performed using acarbose as a standard drug. The molecular docking study was performed using Schrodinger (Maestro V 11.5) software. The parameters glide score, Lipinski rule for drug likeliness, bioactive scoring and ADME properties were assessed in the docking study. In addition, baicalein's antioxidant function was assessed using DPPH assay, nitric oxide scavenging activity. The cytotoxicity of Oroxylum indicumwas evaluated using the Brine shrimp lethality assay. Results: The alpha-amylase assay performed showed IC50 value of 48.40 µg/ml for Oroxylum indicumwhereas alpha-glucosidase assay showed an IC50 value of 16.03 µg/ml. Oroxylum indicumshows the glide score of-5.565 with 5EOF and glide score of -5.339 with 5NN8 in the molecular docking study. The highest percentage of DPPH radical scavenging activity and nitrous oxide scavenging activity were found to be.27% at160 µg/ml and 50.02% at the concentrations of 160 µg/ml respectively. Conclusion: Based on further in vivo and clinical trials, Oroxylum indicummay be used for the management of hyperglycaemia.


2020 ◽  
Vol 94 ◽  
pp. 103394 ◽  
Author(s):  
Fazal Rahim ◽  
Khalid Zaman ◽  
Muhammad Taha ◽  
Hayat Ullah ◽  
Mehreen Ghufran ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fariba Peytam ◽  
Ghazaleh Takalloobanafshi ◽  
Toktam Saadattalab ◽  
Maryam Norouzbahari ◽  
Zahra Emamgholipour ◽  
...  

AbstractIn an attempt to find novel, potent α-glucosidase inhibitors, a library of poly-substituted 3-amino-2,4-diarylbenzo[4,5]imidazo[1,2-a]pyrimidines 3a–ag have been synthesized through heating a mixture of 2-aminobenzimidazoles 1 and α-azidochalcone 2 under the mild conditions. This efficient, facile protocol has been resulted into the desirable compounds with a wide substrate scope in good to excellent yields. Afterwards, their inhibitory activities against yeast α-glucosidase enzyme were investigated. Showing IC50 values ranging from 16.4 ± 0.36 µM to 297.0 ± 1.2 µM confirmed their excellent potency to inhibit α-glucosidase which encouraged us to perform further studies on α-glucosidase enzymes obtained from rat as a mammal source. Among various synthesized 3-amino-2,4-diarylbenzo[4,5]imidazo[1,2-a]pyrimidines, compound 3k exhibited the highest potency against both Saccharomyces cerevisiae α-glucosidase (IC50 = 16.4 ± 0.36 μM) and rat small intestine α-glucosidase (IC50 = 45.0 ± 8.2 μM). Moreover, the role of amine moiety on the observed activity was studied through substituting with chlorine and hydrogen resulted into a considerable deterioration on the inhibitory activity. Kinetic study and molecular docking study have confirmed the in-vitro results.


2018 ◽  
Vol 80 ◽  
pp. 36-42 ◽  
Author(s):  
Muhammad Taha ◽  
Mohd Syukri Baharudin ◽  
Nor Hadiani Ismail ◽  
Syahrul Imran ◽  
Muhammad Naseem Khan ◽  
...  

2019 ◽  
Vol 92 ◽  
pp. 103284 ◽  
Author(s):  
Fazal Rahim ◽  
Sundas Tariq ◽  
Muhammad Taha ◽  
Hayat Ullah ◽  
Khalid Zaman ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1002 ◽  
Author(s):  
Noor Almandil ◽  
Muhammad Taha ◽  
Rai Farooq ◽  
Amani Alhibshi ◽  
Mohamed Ibrahim ◽  
...  

We have synthesized quinoxaline analogs (1–25), characterized by 1H-NMR and HREI-MS and evaluated for thymidine phosphorylase inhibition. Among the series, nineteen analogs showed better inhibition when compared with the standard inhibitor 7-Deazaxanthine (IC50 = 38.68 ± 4.42 µM). The most potent compound among the series is analog 25 with IC50 value 3.20 ± 0.10 µM. Sixteen analogs 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18, 21 and 24 showed outstanding inhibition which is many folds better than the standard 7-Deazaxanthine. Two analogs 8 and 9 showed moderate inhibition. A structure-activity relationship has been established mainly based upon the substitution pattern on the phenyl ring. The binding interactions of the active compounds were confirmed through molecular docking studies.


Sign in / Sign up

Export Citation Format

Share Document