Influence of palm oil mill effluent as inoculum on anaerobic digestion of cattle manure for biogas production

2013 ◽  
Vol 141 ◽  
pp. 174-176 ◽  
Author(s):  
Mohammed Saidu ◽  
Ali Yuzir ◽  
Mohd Razman Salim ◽  
Salmiati ◽  
Shamila Azman ◽  
...  
2019 ◽  
Vol 16 ◽  
pp. 100446 ◽  
Author(s):  
Zaied Bin Khalid ◽  
Md. Nurul Islam Siddique ◽  
Mohd Nasrullah ◽  
Lakhveer Singh ◽  
Zularisam Bin Abdul Wahid ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2473 ◽  
Author(s):  
Muhammad Arif Fikri Hamzah ◽  
Jamaliah Md Jahim ◽  
Peer Mohamed Abdul ◽  
Ahmad Jaril Asis

Malaysia is one of the largest palm oil producers worldwide and its most abundant waste, palm oil mill effluent (POME), can be used as a feedstock to produce methane. Anaerobic digestion is ideal for treating POME in methane production due to its tolerance to high-strength chemical oxygen demand (COD). In this work, we compared the culture conditions during the start-up of anaerobic digestion of acidified POME between thermophilic (55 °C) and mesophilic (37 °C) temperatures. The pH of the digester was maintained throughout the experiment at 7.30 ± 0.2 in a working volume of 1000 mL. This study revealed that the thermophilic temperature stabilized faster on the 44th day compared to the 52nd day for the mesophilic temperature. Furthermore, the thermophilic temperature indicated higher biogas production at 0.60 L- CH 4 /L·d compared to the mesophilic temperature at 0.26 L- CH 4 /L·d. Results from this study were consistent with the COD removal of thermophilic temperature which was also higher than the mesophilic temperature.


2020 ◽  
Vol 296 ◽  
pp. 122304 ◽  
Author(s):  
Wantanasak Suksong ◽  
Wisarut Tukanghan ◽  
Kanathip Promnuan ◽  
Prawit Kongjan ◽  
Alissara Reungsang ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
pp. 14-21
Author(s):  
Sri Ismiyati Damayanti ◽  
Dian Fitriani Astiti ◽  
Chandra Wahyu Purnomo ◽  
Sarto Sarto ◽  
Wiratni Budhijanto

Two-stage anaerobic fluidized bed is an innovation in anaerobic digestion technology intended to handle liquid waste with high organic loading and complex substrate. The process is based on separation between acidogenic/acetogenic and methanogenic processes. The first stage is anaerobic process to convert substrate (represented as soluble chemical oxygen demand/sCOD) into volatile fatty acids (VFA). The second stage is methanogenic process to convert VFA into biogas. This study aimed to separate acidogenic/acetogenic and methanogenic processes by means of limited injection of air (micro-aeration) and inoculum selection. Micro-aeration was introduced in acidogenic/acetogenic stage because the relevant microbes were facultative so that the obligate anaerobic methanogens will be suppressed. On the other hand, the methanogenic reactor was kept completely anaerobic to ensure methanogenic dominance over acidogenic/acetogenic ones. Two sources of inoculums were used in this study, i.e. anaerobically digested biodiesel waste and anaerobically digested cow manure. Both inoculums were taken from active biogas reactor treating biodiesel waste and cow manure, respectively. Experiments were run in batch reactors treating palm oil mill effluent (POME) as the substrate for the acidogenic/acetogenic reactor. After the reaction in the first stage reached the minimum substrate concentration, the content of the reactor was used as the substrate for the methanogenic reactor as the second stage. Routine measurements were taken for sCOD and VFA concentrations, biogas production, and methane concentration in the biogas. Results confirmed that micro-aeration maintained good performance of acidogenic/acetogenic process, which was indicated by peaks in VFA accumulation, while suppressing methanogenic activities as no methane produced in this stage. Digested biodiesel waste was superior inoculum to be compared to digested cow manure with respect to sCOD removal. In the methanogenic stage, digested biodiesel waste also performed better as inoculum as it led to higher VFA conversion, higher biogas production rate, and higher methane content in the biogas. 


2016 ◽  
Vol 78 (5-6) ◽  
Author(s):  
Hathaikarn Thongpan ◽  
Rachadaporn Thongnan ◽  
Nirattisai Rakmak ◽  
Chairat Siripatana

In this work, both models for batch and continuous anaerobic digestion of palm oil mill effluent were developed based on Monod’s kinetics. Then the authors attempt to understand the effect of wastewater-sludge (WW:S) ratio on the biogas production efficiency in batch digesters. The experiments were carried out at a controlled temperature of 35±0.5 °C. Two series of the experiment were conducted. In the first series, the wastewater-sludge ratios covered 1:1 (add sodium bi-carbonate), 1:1, 1:2 and 2:1. It was found that the ratio of 1:2 gave the highest biogas producing efficiency followed by the ratio 1:1 (add sodium bi-carbonate). At 1:1 ratio, sodium bi-carbonate addition was required to start anaerobic digestion at a workable pH range whereas at 1:2 ratio the initial pH is in the workable range without the need of its addition. However, at the ratio of 2:1 the starting pH was too low to adjust pH economically by adding sodium bi-carbonate. The second series was to confine experiments to a narrower ratio range, namely: 1:1 (add sodium bi-carbonate), 1:1.5, 1:2, 1:2.5. In both sets of experiment, the ratio 1:2 gave the best biogas production potential of 76.62 and 78.52 ml of biogas/g COD removed respectively. In all treatments, the process was able to remove more than 80% of wastewater initial COD. The modified Gompertz equation was used to estimate the maximum specific biogas production rate (MBPR or Rm/S0). It was also found that the ratio of 1:2 gave the best MBPR in both experimental series (26.87 ml biogas/g COD-day). A modified Monod-type Model was also developed to describe the microbial growth, substrate consumption and biogas production in continuous operation. In general, sludge recycle provided active biomass which can use the substrate in the wastewater instantly without significant lag phase or delay. Furthermore, continuous-flow model developed, with parameters estimated from batch experiments, predicted the experimental kinetics of the actual continuous experiments satisfactory.  


2019 ◽  
Vol 31 (11) ◽  
pp. 2413-2424 ◽  
Author(s):  
B.K. Zaied ◽  
M.N.I. Siddique ◽  
A.W. Zularisam ◽  
M.F. Ahmad ◽  
Y.M. Salih

Biogas is conventionally utilized in a gas engine to convert the chemical energy into electricity and into thermal energy for heating purposes and is also pumped into the natural gas grid line after impurities are removed. Biogas production from palm oil mill effluent is one of the best options for economic expansion and this would reduce environmental impacts in developing countries like Malaysia. This study aims to perform an analysis of the economic and environmental prospects of biogas production from the anaerobic codigestion method from palm oil mill effluent mixed with cow manure. Anaerobic codigestion technology is considered a practical process by which to overcome the complications of substance properties and system optimization in particular substance digestion operations. Comparisons among various treatment technologies of palm oil mill effluent and their applications have been studied thoroughly. The factors that affect biogas production, along with strategies for their improvement, were studied in present report. The economic feasibility of biogas plant where palm oil mill effluent and cattle manure are main substrates and anaerobic codigestion is the method, has been successfully predicted. Results revealed this might be more feasible if this technology is used on a large scale. Construction of the proposed biomethanization plant is economically feasible because it is projected that about a four-year return-on-investment will be achieved. In conclusion, the present work demonstrates a comprehensive feasibility framework by which to integrate the different features needed to enhance biomethane generation.


2020 ◽  
Vol 722 ◽  
pp. 137833 ◽  
Author(s):  
Mohamed Hasnain Isa ◽  
Lai-Peng Wong ◽  
Mohammed J.K. Bashir ◽  
Nasir Shafiq ◽  
Shamsul Rahman Mohamed Kutty ◽  
...  

2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Firda Mahira Alfiata Chusna ◽  
Melly Mellyanawaty ◽  
Estin Nofiyanti

The production of crude palm oil (CPO) in Indonesia tends to increase over time. Palm oil mill effluent (POME) is the wastewater generated from the palm oil mill process with high organic content. POME is a potential source for anaerobic digestion due to its high organic content. The challenge of POME treatment using an anaerobic process is to enhance biogas production with high soluble chemical oxygen demand (sCOD) removal efficiency. The purpose of this study was to evaluate the effect of selected trace elements addition onto zeolite as immobilization media to the anaerobic digestion of POME in a fluidized batch system. Natural zeolite was used as the medium to immobilize microorganisms in an anaerobic fluidized bed reactor (AFBR). This study used three trace elements impregnated to natural zeolites, i.e. Ni2+, Zn2+, Mg2+. The result shows that Ni2+ and Zn2+ improve the methanogenesis process, prevent the accumulation of VFA as an intermediate product and increase the methane (biogas) production. Meanwhile, Mg2+ only reduced sCOD significantly but it did not affect methane production. Fluidization enhanced the performance of the POME anaerobic digestion process. The fluidization provide a positive effect to enhance biogas production and sCOD removal. The efficiency of sCOD removal in the entire reactors were 80.82%; 81.77%; 75.89% for AFBR-Ni; AFBR-Zn and AFBR-control respectively. The total volume of methane produced by the three AFBR were 163,04; 136,42; 62,79 (in ml CH4 / g sCOD) for AFBR-Ni; AFBR-Zn and AFBR-control, respectively. A B S T R A KProduksi crude palm oil (CPO) di Indonesia cenderung meningkat seiring bertambahnya waktu. Palm oil mill effluent (POME) adalah air limbah yang dihasilkan dari proses penggilingan kelapa sawit dengan kandungan organik yang tinggi. Tantangan dalam mengolah POME menggunakan proses peruraian anaerobik adalah untuk meningkatkan produksi biogas dengan efisiensi penurunan soluble chemical oxygen demand (sCOD) yang tinggi. Tujuan dari penelitian ini adalah mengevaluasi pengaruh penambahan trace element terseleksi pada media imobilisasi zeolit terhadap proses peruraian anaerobik limbah POME dengan sistem batch terfluidisasi. Zeolit alam berperan sebagai media imobilisasi mikroorganisme dalam anaerobic fluidized bed reactor (AFBR). Penelitian ini menggunakan tiga trace element yang diimpregnasikan pada zeolit alam yaitu Ni2+, Zn2+, Mg2+. Hasil penelitian menunjukkan bahwa Ni2+ dan Zn2+ sebagai trace element dapat meningkatkan proses metanogenesis dan mencegah akumulasi VFA sebagai produk antara serta meningkatkan produksi gas metana (biogas). Mg2+ sebagai trace element menurunkan sCOD dengan cukup signifikan namun tidak diimbangi dengan banyaknya metana yang dihasilkan. Fluidisasi meningkatkan performa dari proses peruraian anaerobik POME. Proses fluidisasi memberi pengaruh positif dalam meningkatkan produksi biogas dan soluble chemical oxygen demand (sCOD) removal. Nilai sCOD removal yaitu 80,82%; 81,77%; 75,89% berturut-turut untuk AFBR-Ni; AFBR-Zn dan AFBR-kontrol. Total volume metana yang dihasilkan oleh ketiga AFBR yaitu 163,04; 136,42; 62,79 (dalam ml CH4 / g sCOD) berturut-turut untuk AFBR-Ni; AFBR-Zn dan AFBR-kontrol.


Sign in / Sign up

Export Citation Format

Share Document