soluble chemical oxygen demand
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 2)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 379
Author(s):  
Ignacio T. Vargas ◽  
Natalia Tapia ◽  
John M. Regan

During the last decade, bioprospecting for electrochemically active bacteria has included the search for new sources of inoculum for microbial fuel cells (MFCs). However, concerning power and current production, a Geobacter-dominated mixed microbial community derived from a wastewater inoculum remains the standard. On the other hand, cathode performance is still one of the main limitations for MFCs, and the enrichment of a beneficial cathodic biofilm emerges as an alternative to increase its performance. Glucose-fed air-cathode reactors inoculated with a rumen-fluid enrichment and wastewater showed higher power densities and soluble chemical oxygen demand (sCOD) removal (Pmax = 824.5 mWm−2; ΔsCOD = 96.1%) than reactors inoculated only with wastewater (Pmax = 634.1 mWm−2; ΔsCOD = 91.7%). Identical anode but different cathode potentials suggest that differences in performance were due to the cathode. Pyrosequencing analysis showed no significant differences between the anodic community structures derived from both inocula but increased relative abundances of Azoarcus and Victivallis species in the cathodic rumen enrichment. Results suggest that this rarely used inoculum for single-chamber MFCs contributed to cathodic biofilm improvements with no anodic biofilm effects.


2021 ◽  
Author(s):  
Yongsen Shi ◽  
Chunli Xu ◽  
Jingyi Li ◽  
Yilin Yao ◽  
Qigui Niu

The expanded granular sludge blanket reactor (EGSB) was operated for 198 days to study the long-term effects of phenanthrene (PHE) enrichment on system performance and microbial community. The results showed that the PHE was significantly enriched in the reactor. The final PHE concentration in effluent and sludge reached to 1.764±0.05 mg/L and 12.52±0.42 mg/gTS, respectively. While the average daily methane production was decreased by 5.0%-9.8% under long-term PHE exposure. The 3D-EEM of effluent indicated that PHE stimulated the microbial metabolism with the higher intensity of soluble microbial byproduct-like materials (SMP) and proteins. Moreover, the removal efficiency of soluble chemical oxygen demand (SCOD) and NH4+-N gradually diminished with the enrichment of PHE. PHE shaped the microbial community, and the predominant fermentative bacteria (Mesotoga) was severely inhibited. Contrarily, the bacteria (Syntrophorhabdus, Acinetobacter, Desulfovibrio, Desulfomicrobium) involved in PHE-degradation was enriched at end of Phase V. In addition, the relative abundance (RA) of hydrotrophic methanogens (Methanofastidiosum, Methanolinea, Methanobacterium, Methanomassiliicoccus) increased by 0.96-fold with the long-term enrichment of PHE, while the RA of acetoclastic Methanosaeta obviously decreased.


2021 ◽  
Vol 13 (13) ◽  
pp. 7202
Author(s):  
Yasmine Ryma Ouahabi ◽  
Kenza Bensadok ◽  
Abdeldjalil Ouahabi

Biomass is an attractive energy source that can be used for production of heat, power, and transport fuels and when produced and used on a sustainable basis, can make a large contribution to reducing greenhouse gas emissions. Anaerobic digestion (AD) is a suitable technology for reducing organic matter and generating bioenergy in the form of biogas. This study investigated the factors allowing the optimization of the process of biogas production from the digestion of wheat straw (WS). The statistical analysis of the experiments carried out showed that ultrasonic processing plays a fundamental role with the sonication density and solids concentration leading to improved characteristics of WS, reducing particle size, and increasing concentration of soluble chemical oxygen demand. The higher the sonicating power used, the more the waste particles are disrupted. The optimality obtained under mesophilic conditions for WS pretreated with 4% w/w (weight by weight) H2O2 at temperature 36 °C under 10 min of ultrasonication at 24 kHz with a power of 200 W improves the methane yield by 64%.


Author(s):  
Yasmine Ryma Ouahabi ◽  
Kenza Bensadok ◽  
Abdeldjalil Ouahabi

Biomass is an attractive energy source that can be used for production of heat, power, and transport fuels, and when produced and used on a sustainable basis, can make a large contribution to reducing greenhouse gas (GHG) emissions. Anaerobic digestion (AD) is a suitable technology for reducing organic matter and generating bioenergy in the form of biogas. This study investigates the factors allowing the optimization of the process of biogas production from the co-digestion of wheat straw (WS) and bovine manure. The statistical analysis of the experiments carried out show that ultrasonic processing plays a fundamental role by sonication density and solids concentration leading to improved characteristics of WS by reducing particle size and increasing concentration of soluble chemical oxygen demand. The higher the sonicating power used, the more the waste particles are disrupted. The optimality obtained under mesophilic conditions for WS pretreated with 4% w/w (weight by weight) H2O2 at temperature 36 °C under 10 minutes of ultrasonication at 25 kHz improves the methane yield by 64%.


2021 ◽  
Vol 5 ◽  
Author(s):  
Sílvia Sousa ◽  
Elizabeth Duarte ◽  
Marta Mesquita ◽  
Sandra Saraiva

In the past years, there has been steady growth in work relating to improve resource efficiency through waste minimization and bioenergy recovery to mitigate climate change. Agro-food industries produce large amounts of bio-waste, challenging innovative energetic valorization strategies in the framework of circular economy principles. Anaerobic digestion (AD) technology is an interesting route to stabilize organic matter and produce biogas as a renewable energy source. This study involves continuous co-digestion of pig slurry (PS), cereal and exhausted coffee wastes (CECW) performed in a continuously stirred tank reactor, with a hydraulic retention time (HRT) of 16 days under at mesophilic conditions (36.9 ± 0.3°C). The experimental trials, were designed to include different cereal and exhausted coffee liquor (CECL) shares in the feeding mixture, corresponding to different PS to CECL ratios (PS:CECL), respectively: 100:0 (T0), 90:10 (T1), 80:20 (T2), and 70:30 (T3), in terms of percentage of inlet feeding rate (v:v). The results obtained for the feeding rate (70:30) yield to the highest specific methane production (SMP = 341 ml.gVS−1) led to a 3.5-fold improvement in comparison with the reference scenario. The synergetic effect between the microbial consortia of PS and the high carbon to nitrogen ratio (C/N) of CECL explain the improvements achieved. The maximum soluble chemical oxygen demand (SCOD) reduction (84.0%) due to the high content and soluble chemical oxygen demand to total chemical oxygen demand ratio (SCOD/TCOD) corroborate the results achieved. The digester stability, evaluated by specific energetic loading rate, was below the limit (0.4 d−1). Results from ANOVA showed a significant effect of CECL on the resulting GPR and SMP values. Additionally, Tukey's “Honest Significant Difference” method, confirmed statistically significant differences between the trials T3-T0, T3-T1, T3-T2, and T2-T0. Thus, co-digestion of PS and of CECL seems to be a promising approach for bioenergy recovery and promoting biowastes circularity.


2021 ◽  
Author(s):  
Yongliang Wang ◽  
Xiaohui Zhou ◽  
Bin Dai ◽  
Xiaoqiang Zhu

Abstract Plant waste (PW) and excess sludge (ES) are two main organic matters of municipal solid waste. However, there are few reports on their anaerobic co-digestion. In this work, the mixed proportion of PW and ES anaerobic co digestion was first optimized at mesophilic temperature, and then the anaerobic co-digestion of PW and ES was enhanced with strong oxidant calcium peroxide (CP). The results showed that the optimal mixing ratio of PW and ES was 1/1 (in terms of volatile solids), and the C/N of mixed digestion substrate was 23.5/1, the maximum methane production was 172.6 mL/g (in terms of volatile solids). CP could enhance methane production from anaerobic co-digestion of PW and ES. When the content of CP was 0.2 g/g (in terms of total suspended solids), the maximum methane production was 234.8 mL/g, about 1.4 times of the blank. The mechanism investigation showed that CP promoted the release of organic matter during the co-digestion, and the higher the content of CP, the greater the release of soluble chemical oxygen demand. The presence of appropriate amount of CP promoted the activities of key enzymes in anaerobic fermentation process, and then increased the efficiency of methane production. The results of this work provide an alternative strategy for the resource utilization of PW and ES.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1640
Author(s):  
Matthijs H. Somers ◽  
Samet Azman ◽  
Ruud Vanhecke ◽  
Lise Appels

Substantial insight into the effect of ultrasound disintegration on the changes in biochemical parameters of manure digestate and digestate age is needed to understand the potential of digestate treatment. To address this knowledge gap, in this study, the effect of digestate age on the efficiency of ultrasound (US) disintegration was investigated. In this scope, dairy manure digestate samples were incubated in an oven at 37 °C for a predetermined amount of time to obtain simulated digestate ages of 15, 22, 29, 36 and 43 days. The results showed that US disintegration efficiency significantly affected the initial biochemical characteristics of digestate and that the digestate age had a significant effect on the US disintegration efficiency. This effect diminished when the applied specific energy (SE) was higher than 3000 kJ/kg total solids (TS). A numerical partial least squares (PLS) model was constructed to investigate the relative influences of the initial biochemical parameters on the soluble chemical oxygen demand (sCOD) and soluble carbohydrates (sCARB) solubilization. The results of the high-quality (R2 = 0.8) model indicated that the most influential parameters for the efficiency of US disintegration were the SE, the initial sCARB0, the TS, the initial sCOD0 and the volatile solids (VS).


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Firda Mahira Alfiata Chusna ◽  
Melly Mellyanawaty ◽  
Estin Nofiyanti

The production of crude palm oil (CPO) in Indonesia tends to increase over time. Palm oil mill effluent (POME) is the wastewater generated from the palm oil mill process with high organic content. POME is a potential source for anaerobic digestion due to its high organic content. The challenge of POME treatment using an anaerobic process is to enhance biogas production with high soluble chemical oxygen demand (sCOD) removal efficiency. The purpose of this study was to evaluate the effect of selected trace elements addition onto zeolite as immobilization media to the anaerobic digestion of POME in a fluidized batch system. Natural zeolite was used as the medium to immobilize microorganisms in an anaerobic fluidized bed reactor (AFBR). This study used three trace elements impregnated to natural zeolites, i.e. Ni2+, Zn2+, Mg2+. The result shows that Ni2+ and Zn2+ improve the methanogenesis process, prevent the accumulation of VFA as an intermediate product and increase the methane (biogas) production. Meanwhile, Mg2+ only reduced sCOD significantly but it did not affect methane production. Fluidization enhanced the performance of the POME anaerobic digestion process. The fluidization provide a positive effect to enhance biogas production and sCOD removal. The efficiency of sCOD removal in the entire reactors were 80.82%; 81.77%; 75.89% for AFBR-Ni; AFBR-Zn and AFBR-control respectively. The total volume of methane produced by the three AFBR were 163,04; 136,42; 62,79 (in ml CH4 / g sCOD) for AFBR-Ni; AFBR-Zn and AFBR-control, respectively. A B S T R A KProduksi crude palm oil (CPO) di Indonesia cenderung meningkat seiring bertambahnya waktu. Palm oil mill effluent (POME) adalah air limbah yang dihasilkan dari proses penggilingan kelapa sawit dengan kandungan organik yang tinggi. Tantangan dalam mengolah POME menggunakan proses peruraian anaerobik adalah untuk meningkatkan produksi biogas dengan efisiensi penurunan soluble chemical oxygen demand (sCOD) yang tinggi. Tujuan dari penelitian ini adalah mengevaluasi pengaruh penambahan trace element terseleksi pada media imobilisasi zeolit terhadap proses peruraian anaerobik limbah POME dengan sistem batch terfluidisasi. Zeolit alam berperan sebagai media imobilisasi mikroorganisme dalam anaerobic fluidized bed reactor (AFBR). Penelitian ini menggunakan tiga trace element yang diimpregnasikan pada zeolit alam yaitu Ni2+, Zn2+, Mg2+. Hasil penelitian menunjukkan bahwa Ni2+ dan Zn2+ sebagai trace element dapat meningkatkan proses metanogenesis dan mencegah akumulasi VFA sebagai produk antara serta meningkatkan produksi gas metana (biogas). Mg2+ sebagai trace element menurunkan sCOD dengan cukup signifikan namun tidak diimbangi dengan banyaknya metana yang dihasilkan. Fluidisasi meningkatkan performa dari proses peruraian anaerobik POME. Proses fluidisasi memberi pengaruh positif dalam meningkatkan produksi biogas dan soluble chemical oxygen demand (sCOD) removal. Nilai sCOD removal yaitu 80,82%; 81,77%; 75,89% berturut-turut untuk AFBR-Ni; AFBR-Zn dan AFBR-kontrol. Total volume metana yang dihasilkan oleh ketiga AFBR yaitu 163,04; 136,42; 62,79 (dalam ml CH4 / g sCOD) berturut-turut untuk AFBR-Ni; AFBR-Zn dan AFBR-kontrol.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 800
Author(s):  
Giovanna Siracusa ◽  
Qiuyan Yuan ◽  
Ilaria Chicca ◽  
Alessandra Bardi ◽  
Francesco Spennati ◽  
...  

In the present study, an Ascomycete fungal strain, Lambertella sp., isolated from environmental polluted matrices, was tested for the capacity to reduce the contamination and the toxicity of intermediate and old landfill leachates. Batch tests in flasks, under co-metabolic conditions, were performed with two different old leachates, with suspended and immobilized Lambertella sp. biomass, resulting in a soluble chemical oxygen demand depletion of 70% and 45%, after 13 and 30 days, respectively. An intermediate landfill leachate was treated in lab-scale reactors operating in continuous conditions for three months, inoculated with immobilized Lambertella sp. biomass, in absence of co-substrates. The Lambertella sp. depleted the corresponding total organic carbon by 90.2%. The exploitability of the Lambertella sp. strain was evaluated also in terms of reduction of phyto-, cyto-, and mutagenicity of the different Landfill Leachates at the end of the myco-based treatment, resulting in an efficient depletion of leachate clastogenicity.


Sign in / Sign up

Export Citation Format

Share Document