Effect of high electron donor supply on dissimilatory nitrate reduction pathways in a bioreactor for nitrate removal

2014 ◽  
Vol 171 ◽  
pp. 291-297 ◽  
Author(s):  
Anna Behrendt ◽  
Sheldon Tarre ◽  
Michael Beliavski ◽  
Michal Green ◽  
Judith Klatt ◽  
...  
Author(s):  
Natalia Jakus ◽  
Nia Blackwell ◽  
Karsten Osenbrück ◽  
Daniel Straub ◽  
James M. Byrne ◽  
...  

Nitrate removal in oligotrophic environments is often limited by the availability of suitable organic electron donors. Chemolithoautotrophic bacteria may play a key role in denitrification in aquifers depleted in organic carbon. Under anoxic and circumneutral pH conditions, iron(II) was hypothesized to serve as an electron donor for microbially mediated nitrate reduction by Fe(II)-oxidizing (NRFeOx) microorganisms. However, lithoautotrophic NRFeOx cultures have never been enriched from any aquifer and as such there are no model cultures available to study the physiology and geochemistry of this potentially environmentally relevant process. Using iron(II) as an electron donor, we enriched a lithoautotrophic NRFeOx culture from nitrate-containing groundwater of a pyrite-rich limestone aquifer. In the enriched NRFeOx culture that does not require additional organic co-substrates for growth, within 7-11 days 0.3-0.5 mM of nitrate was reduced and 1.3-2 mM of iron(II) was oxidized leading to a stoichiometric NO 3 - /Fe(II) ratio of 0.2, with N 2 and N 2 O identified as the main nitrate reduction products. Short-range ordered Fe(III) (oxyhydr)oxides were the product of iron(II) oxidation. Microorganisms were observed to be closely associated with formed minerals but only few cells were encrusted, suggesting that most of the bacteria were able to avoid mineral precipitation at their surface. Analysis of the microbial community by long-read 16S rRNA gene sequencing revealed that the culture is dominated by members of the Gallionellaceae family that are known as autotrophic, neutrophilic, microaerophilic iron(II)-oxidizers. In summary, our study suggests that NRFeOx mediated by lithoautotrophic bacteria can lead to nitrate removal in anthropogenically impacted aquifers. Importance Removal of nitrate by microbial denitrification in groundwater is often limited by low concentrations of organic carbon. In these carbon-poor ecosystems, nitrate-reducing bacteria that can use inorganic compounds such as Fe(II) (NRFeOx) as electron donors could play a major role in nitrate removal. However, no lithoautotrophic NRFeOx culture has been successfully isolated or enriched from this type of environment and as such there are no model cultures available to study the rate-limiting factors of this potentially important process. Here we present the physiology and microbial community composition of a novel lithoautotrophic NRFeOx culture enriched from a fractured aquifer in southern Germany. The culture is dominated by a putative Fe(II)-oxidizer affiliated with the Gallionellaceae family and performs nitrate reduction coupled to Fe(II) oxidation leading to N 2 O and N 2 formation without the addition of organic substrates. Our analyses demonstrate that lithoautotrophic NRFeOx can potentially lead to nitrate removal in nitrate-contaminated aquifers.


2020 ◽  
Vol 87 (2) ◽  
Author(s):  
Shuangyuan Liu ◽  
Jingcheng Dai ◽  
Hehong Wei ◽  
Shuyang Li ◽  
Pei Wang ◽  
...  

ABSTRACT Under anoxic conditions, many bacteria, including Shewanella loihica strain PV-4, could use nitrate as an electron acceptor for dissimilatory nitrate reduction to ammonium (DNRA) and/or denitrification. Previous and current studies have shown that DNRA is favored under higher ambient carbon-to-nitrogen (C/N) ratios, whereas denitrification is upregulated under lower C/N ratios, which is consistent with our bioenergetics calculations. Interestingly, computational analyses indicate that the common cyclic AMP receptor protein (designated CRP1) and its paralogue CRP2 might both be involved in the regulation of two competing dissimilatory nitrate reduction pathways, DNRA and denitrification, in S. loihica PV-4 and several other denitrifying Shewanella species. To explore the regulatory mechanism underlying the dissimilatory nitrate reduction (DNR) pathways, nitrate reduction of a series of in-frame deletion mutants was analyzed under different C/N ratios. Deletion of crp1 could accelerate the reduction of nitrite to NO under both low and high C/N ratios. CRP1 is not required for denitrification and actually suppresses production of NO and N2O gases. Deletion of either of the NO-forming nitrite reductase genes nirK or crp2 blocked production of NO gas. Furthermore, real-time PCR and electrophoretic mobility shift assays (EMSAs) demonstrated that the transcription levels of DNRA-relevant genes such as nap-β (napDABGH), nrfA, and cymA were upregulated by CRP1, while nirK transcription was dependent on CRP2. There are tradeoffs between the different physiological roles of nitrate/lactate, as nitrogen nutrient/carbon source and electron acceptor/donor and CRPs may leverage dissimilatory nitrate reduction pathways for maximizing energy yield and bacterial survival under ambient environmental conditions. IMPORTANCE Some microbes utilize different dissimilatory nitrate reduction (DNR) pathways, including DNR to ammonia (DNRA) and denitrification pathways, for anaerobic respiration in response to ambient carbon/nitrogen ratio changes. Large-scale industrial nitrogen fixation and fertilizer application raise the concern of emission of N2O, a stable gas with potent global warming potential, as consequence of microbial respiration, thereby aggravating global warming and climate change. However, little is known about the molecular mechanism underlying the choice of two competing DNR pathways. We demonstrate that the global regulator CRP1, which is widely encoded in bacteria, is required for DNRA in S. loihica PV-4 strain, while the CRP2 paralogue is required for transcription of the nitrite reductase gene nirK for denitrification. Sufficient carbon source lead to the predominance of DNRA, while carbon source/electron donor deficiency may result in an incomplete denitrification process, raising the concern of high levels of N2O emission from nitrate-rich and carbon source-poor waters and soils.


2012 ◽  
Vol 109 (11) ◽  
pp. 2904-2910 ◽  
Author(s):  
Wentao Su ◽  
Lixia Zhang ◽  
Daping Li ◽  
Guoqiang Zhan ◽  
Junwei Qian ◽  
...  

2021 ◽  
Vol 206 ◽  
pp. 104815
Author(s):  
Yinghui Jiang ◽  
Guoyu Yin ◽  
Lijun Hou ◽  
Min Liu ◽  
Dengzhou Gao ◽  
...  

2018 ◽  
Vol 94 (10) ◽  
Author(s):  
Peter Stief ◽  
Ann Sofie Birch Lundgaard ◽  
Alexander H Treusch ◽  
Bo Thamdrup ◽  
Hans-Peter Grossart ◽  
...  

2021 ◽  
Author(s):  
Linyu Wei ◽  
Jing Tian ◽  
Qing Wang ◽  
Yuanyuan Liu ◽  
Yi Yu ◽  
...  

Abstract g-C3N4/TiO2 composite has excellent photoelectric properties and is considered as a good carrier of nanoparticles. A novel composite of nZVI-g-C3N4/TiO2 was successfully synthesized through in-situ growth nZVI on the surface of g-C3N4/TiO2 with liquid phase reduction method. The composite was characterized by TEM, XRD, EDS and evaluated its nitrate removal efficiency. The effects of composite dosage, solution initial pH and HCOOH concentration on nitrate reduction were investigated. The results showed that nitrate was rapidly reduced by nZVI-g-C3N4/TiO2 composite. The dosage of 4 g/L nZVI-g-C3N4/TiO2 composite and 3.0 mM of HCOOH concentration was more suitable for nitrate reduction. Solution initial pH had little impact on the nitrate reduction efficiency, but affected the proportion of the nitrate reduction products. The mechanism of nitrate reduction in the nZVI-gC3N4/TiO2/HCOOH-Xe-lamp system was proposed. The nZVI-gC3N4/TiO2 composite could be considered as a viable and promising technology for water pollution remediation.


Sign in / Sign up

Export Citation Format

Share Document