Effects of organic loading rate on biogas production from macroalgae: Performance and microbial community structure

2017 ◽  
Vol 235 ◽  
pp. 292-300 ◽  
Author(s):  
Meng-Ting Sun ◽  
Xiao-Lei Fan ◽  
Xiao-Xian Zhao ◽  
Shan-Fei Fu ◽  
Shuai He ◽  
...  
2015 ◽  
Vol 82 (2) ◽  
pp. 438-449 ◽  
Author(s):  
Daniel Girma Mulat ◽  
H. Fabian Jacobi ◽  
Anders Feilberg ◽  
Anders Peter S. Adamsen ◽  
Hans-Hermann Richnow ◽  
...  

ABSTRACTFlexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA andmcrAgenes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of theMethanosarcinagenus followed by that of theMethanobacteriumgenus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes.


Author(s):  
Syeed Md Iskander ◽  
Yamrot M. Amha ◽  
Phillip Wang ◽  
Qin Dong ◽  
Juhe Liu ◽  
...  

Co-digestion of fats, oils, and grease (FOG) with food waste (FW) can improve the energy recovery in anaerobic membrane bioreactors (AnMBRs). Here, we investigated the effect of co-digestion of FW and FOG in AnMBRs at fat mass loading of 0.5, 0.75, and 1.0 kg m–3 day–1 with a constant organic loading rate of 5.0 gCOD L–1 day–1 in both a single-phase (SP) and two-phase (TP) configuration. A separate mono-digestion of FW at an identical organic loading rate was used as the benchmark. During co-digestion, higher daily biogas production, ranging from 4.0 to 12.0%, was observed in the two-phase methane phase (TP-MP) reactor compared to the SP reactor, but the difference was statistically insignificant (p > 0.05) due to the high variability in daily biogas production. However, the co-digestion of FW with FOG at 1.0 kg m–3 day–1 fat loading rate significantly (p < 0.05) improved daily biogas production in both the SP (11.0%) and TP (13.0%) reactors compared to the mono-digestion of FW. Microbial community analyses using cDNA-based MinION sequencing of weekly biomass samples from the AnMBRs revealed the prevalence of Lactobacillus (92.2–95.7% relative activity) and Anaerolineaceae (13.3–57.5% relative activity), which are known as fermenters and fatty acid degraders. Syntrophic fatty acid oxidizers were mostly present in the SP and TP-MP reactors, possibly because of the low pH and short solid retention time (SRT) in the acid phase digesters. A greater abundance of the mcrA gene copies (and methanogens) was observed in the SP and MP reactors compared to the acid-phase (AP) reactors. This study demonstrates that FW and FOG can be effectively co-digested in AnMBRs and is expected to inform full-scale decisions on the optimum fat loading rate.


2011 ◽  
Vol 64 (2) ◽  
pp. 320-325 ◽  
Author(s):  
J. Gustavsson ◽  
B. H. Svensson ◽  
A. Karlsson

The aim of this study was to investigate the effect of trace element supplementation on operation of wheat stillage-fed biogas tank reactors. The stillage used was a residue from bio-ethanol production, containing high levels of sulfate. In biogas production, high sulfate content has been associated with poor process stability in terms of low methane production and accumulation of process intermediates. However, the results of the present study show that this problem can be overcome by trace element supplementations. Four lab-scale wheat stillage-fed biogas tank reactors were operated for 345 days at a hydraulic retention time of 20 days (37 °C). It was concluded that daily supplementation with Co (0.5 mg L−1), Ni (0.2 mg L−1) and Fe (0.5 g L−1) were required for maintaining process stability at the organic loading rate of 4.0 g volatile solids L−1 day−1.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1487
Author(s):  
Vicky De Groof ◽  
Marta Coma ◽  
Tom C. Arnot ◽  
David J. Leak ◽  
Ana B. Lanham

Production of medium chain carboxylic acids (MCCA) as renewable feedstock bio-chemicals, from food waste (FW), requires complicated reactor configurations and supplementation of chemicals to achieve product selectivity. This study evaluated the manipulation of organic loading rate in an un-supplemented, single stage stirred tank reactor to steer an anaerobic digestion (AD) microbiome towards acidogenic fermentation (AF), and thence to chain elongation. Increasing substrate availability by switching to a FW feedstock with a higher COD stimulated chain elongation. The MCCA species n-caproic (10.1 ± 1.7 g L−1) and n-caprylic (2.9 ± 0.8 g L−1) acid were produced at concentrations comparable to more complex reactor set-ups. As a result, of the adjusted operating strategy, a more specialised microbiome developed containing several MCCA-producing bacteria, lactic acid-producing Olsenella spp. and hydrogenotrophic methanogens. By contrast, in an AD reactor that was operated in parallel to produce biogas, the retention times had to be doubled when fed with the high-COD FW to maintain biogas production. The AD microbiome comprised a diverse mixture of hydrolytic and acidogenic bacteria, and acetoclastic methanogens. The results suggest that manipulation of organic loading rate and food-to-microorganism ratio may be used as an operating strategy to direct an AD microbiome towards AF, and to stimulate chain elongation in FW fermentation, using a simple, un-supplemented stirred tank set-up. This outcome provides the opportunity to repurpose existing AD assets operating on food waste for biogas production, to produce potentially higher value MCCA products, via simple manipulation of the feeding strategy.


Sign in / Sign up

Export Citation Format

Share Document