High nitrogen removal rate using ANAMMOX process at short hydraulic retention time

2013 ◽  
Vol 67 (5) ◽  
pp. 968-975 ◽  
Author(s):  
C. G. Casagrande ◽  
A. Kunz ◽  
M. C. De Prá ◽  
C. R. Bressan ◽  
H. M. Soares

The anaerobic ammonium oxidation (ANAMMOX) is a chemolithoautotrophic process, which converts NH4+ to N2 using nitrite (NO2−) as the electron acceptor. This process has very high nitrogen removal rates (NRRs) and is an alternative to classical nitrification/denitrification wastewater treatment. In the present work, a strategy for nitrogen removal using ANAMMOX process was tested evaluating their performance when submitted to high loading rates and very short hydraulic retention times (HRTs). An up-flow ANAMMOX column reactor was inoculated with 30% biomass (v v−1) fed from 100 to 200 mg L−1 of total N (NO2−-N + NH4+-N) at 35 °C. After start-up and process stability the maximum NRR in the up-flow anaerobic sludge blanket (UASB) reactor was 18.3 g-N L−1 d−1 operated at 0.2 h of HRT. FISH (fluorescence in situ hybridization) analysis and process stoichiometry confirmed that ANAMMOX was the prevalent process for nitrogen removal during the experiments. The results point out that high NRRs can be obtained at very short HRTs using up-flow ANAMMOX column reactor configuration.

2021 ◽  
Vol 26 (1) ◽  
pp. 25
Author(s):  
Zulkarnaini Zulkarnaini ◽  
Puti Sri Komala ◽  
Arief Almi

The anaerobic ammonium oxidation (anammox) biofilm process commonly uses various inorganic carriers to enhance nitrogen removal under anaerobic conditions. This study aims to analyze the performance of nitrogen removal in anammox process using sugarcane bagasse as an organic carrier. The experiment was carried out by using an up‐flow anaerobic sludge blanket (UASB) reactor for treating artificial wastewater at room temperature. The reactor was fed with ammonium and nitrite with the concentrations of 70‐150 mg–N/L and variations in the hydraulic retention time of 24 and 12 h. The granular anammox belongs to the genus Candidatus Brocadia sinica that was added as an inoculum of the reactor operation. The experimental stoichiometric of anammox for ΔNO2‐–N: ΔNH4+–N and ΔNO3‐: ΔNH4+ were 1.24 and 0.18, respectively, which is similar to anammox stoichiometry. The maximum Nitrogen Removal Rate (NRR) has achieved 0.29 kg–N/m3.d at Nitrogen Loading Rate (NLR) 0.6 kg–N/m3.d. The highest ammonium conversion efficiency (ACE) and nitrogen removal efficiency (NRE) were 88% and 85%, respectively. Based on this results, it indicated that sugarcane bagasse as organic carriers could increase the amount of total nitrogen removal by provided of denitrification process but inhibited the anammox process at a certain COD concentration.


2020 ◽  
Vol 21 (1) ◽  
pp. 31-39
Author(s):  
Zulkarnaini Zulkarnaini ◽  
Reri Afrianita ◽  
Ilham Hagi Putra

ABSTRACTAnammox process is a more practical alternative in biological nitrogen removal compared to conventional nitrification-denitrification processes. This process conducted at the optimum temperature of 370C. Indonesia, as a tropical country, has the potential for the application of anammox processes to remove nitrogen in wastewater. The purpose of this study was to analyze the efficiency of nitrogen removal in the anammox process using the Up-Flow Anaerobic Sludge Blanket (UASB) reactor at ambient temperature with variations in the hydraulic retention time (HRT) of 24 hours and 12 hours, at the laboratory scale. Samples are measured twice a week using a UV-Vis spectrophotometer. As a seeding sludge for start-up, the reactor was inoculated with granular anammox bacteria genus Candidatus Brocadia. At the stable operation, the ratio of ΔNO2--N:ΔNH4+-N and ΔNO3--N:ΔNH4+-N approach the stoichiometry of the anammox process were 1.20 and 0.21, respectively. The performance of nitrogen removal with 24-hour HRT obtained a maximum nitrogen removal rate (NRR) of 0.113 kg-N/m3.d with nitrogen loading rate (NLR) 0.14 kg-N/m3.d, and at 12-hour HRT, maximum NRR  of 0.196 kg-N/m3.d with NLR 0,28 kg-N/m3.d. Ammonium Conversion Efficiency (ACE) and Nitrogen Removal Efficiency (NRE) maximum for HRT 24 hours were 82% and 77%, respectively while HRT 12 hours were 72% and 68%, respectively. The anammox process operated stably in the tropical temperature with a temperature range of 23-280C on a laboratory scale using the UASB reactor.Keywords: anammox, nitrogen, temperature, tropical, uasb.ABSTRAKProses anammox menjadi alternatif yang lebih efektif dalam penyisihan nitrogen secara biologi dibandingkan dengan proses konvensional nitrifikasi-denitrifikasi. Proses ini berlangsung optimum pada suhu 370C. Indonesia sebagai negara tropis memiliki potensi untuk aplikasi proses anammox untuk menghilangkan nitrogen pada air limbah. Penelitian ini bertujuan untuk menganalisis efesiensi penyisihan nitrogen pada proses anammox menggunakan Up-Flow Anaerobic Sludge Blanket (UASB) reaktor pada suhu ambien dengan variasi Waktu Tinggal Hidrolik (WTH) 24 jam dan 12 jam, pada skala laboratorium. Sampel diukur dua kali setiap minggu menggunakan spektrofotometer UV-Vis. Sebagai seeding sludge (lumpur biakan) untuk start-up (memulai) reaktor digunakan bakteri anammox genus Candidatus Brocadia berbentuk granular. Berdasarkan hasil pengukuran, didapatkan nilai rasio ΔNO2--N:ΔNH4+-N dan ΔNO3--N:ΔNH4+-N mendekati stoikiometri proses anammox yaitu 1,20 dan 0,21. Kinerja penyisihan nitrogen dengan WTH 24 jam didapatkan nilai tingkat penyisihan nitrogen (TPyN ) maksimum 0,113 kg-N/m3.h pada tingkat pemuatan nitrogen (TPN) 0,14 kg-N/m3.h, dan WTH 12 jam nilai TPyN  maksimum 0,196 kg-N/m3.h pada TPN 0,28 kg-N/m3.h. Nilai efisiensi konversi amonia (EKA) dan efisiensi penyisihan nitrogen (EPN) maksimum pada WTH 24 jam berturut-turut adalah 82% dan 77%, sedangkan pada WTH 12 jam berturut-turut adalah 72% dan 68%. Penelitian membuktikan bahwa proses anammox dapat berlangsung stabil pada daerah tropis dengan suhu terukur 21-290C pada skala laboratorium menggunakan UASB reaktor. Kata kunci: Anammox, nitrogen, temperatur, tropis, uasb.


Author(s):  
Zulkarnaini Zulkarnaini ◽  
Ansiha Nur ◽  
Wina Ermaliza

Anaerobic ammonium oxidation (anammox) is the process of converting ammonium directly into nitrogen gas with nitrite as an electron acceptor under anaerobic conditions. This process is more effective than conventional nitrification-denitrification but is very dependent on several parameters, one of which is temperature. The optimum temperature range for the growth of anammox bacteria is 30-400C. The purpose of this research was to determine the efficiency of nitrogen removal by anammox process using palm fibers in the Up-Flow Anaerobic Sludge Blanket (UASB) reactor in the tropical temperature. The experiment was conducted at a laboratory scale with a variation of Hydraulic Retention Time (HRT) 24 h and 12 h using artificial wastewater. The reactor was inoculated with anammox granule genus Candidatus Brocadia. The concentration of ammonium, nitrite, and nitrate in the influent and effluent were measured using a UV-Vis spectrophotometer based on standard method. Based on the experiment, the ratio ΔNH4+-N:ΔNO2--N and ΔNO3--N:ΔNH4+-N similar with stoichiometric of anammox. The maximum Nitrogen removal performance (NRT) achieved 0.11 kg-N/m3.d at Nitrogen Loading Rate (NLR) 0.14 kg-N/m3.d and 0.20 kg-N/m3.d at NLR 0.29 kg-N/m3.d. The removal efficiency for Ammonium Conversion Efficiency (ACE) and Nitrogen Removal Efficiency (NRE) in HRT 24 h were 79% and 76%, respectively while decreased in HRT 12 h were 72% and 69%, respectively. Anammox process can be applied in the tropical temperature at a laboratory scale using a UASB reactor with palm fiber as the carrier.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110334
Author(s):  
Junmin Wang ◽  
Lei Fu

The anaerobic nitrogen removal performance of anammox at 30°C, 25°C, and 16°C were studied by using the UASB (Up flow Anaerobic Sludge Blanket) reactor and the influent concentration of NH4+-N and NO2−-N were 16.9 and 20.6 mg L−1 respectively. Experimental results showed that high-efficiency anammox nitrogen removal could be achieved at 30°C, when hydraulic retention time (HRT) was 0.14 h, the nitrogen removal rate (NRR) was 5.73 kg N m−3 d−1. The anammox reactor operated stably for more than 80 days under the condition of 16°C–20°C, and the high NRR of 2.78 kg N m−3 d−1 was obtained. In this experiment, DO had little effect on the activity of anammox granular sludge, and the nitrogen removal performance could be quickly recovered in a short period of time after being affected by DO. Moreover, the stoichiometric ratio of NO2−-N and NH4+-N consumption (ΔNO2−-N/ΔNH4+-N) and the stoichiometric ratio of NO3−-N production and NH4+-N conversion (ΔNO3−-N/ΔNH4+-N) were 1.21 ± 0.11and 0.25 ± 0.06 respectively at 30°C, which were very close to the theoretical value, it indicated that anammox bacteria were the dominant bacteria at 30°C.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 512
Author(s):  
Jeremiah Chimhundi ◽  
Carla Hörstmann ◽  
Evans M. N. Chirwa ◽  
Hendrik G. Brink

The main objective of this study was to achieve the continuous biorecovery and bioreduction of Pb(II) using an industrially obtained consortia as a biocatalyst. An upflow anaerobic sludge blanket reactor was used in the treatment process. The bioremediation technique that was applied made use of a yeast extract as the microbial substrate and Pb(NO3)2 as the source of Pb(II). The UASB reactor exhibited removal efficiencies of between 90 and 100% for the inlet Pb concentrations from 80 to 2000 ppm and a maximum removal rate of 1948.4 mg/(L·d) was measured. XRD and XPS analyses of the precipitate revealed the presence of Pb0, PbO, PbS and PbSO4. Supporting experimental work carried out included growth measurements, pH, oxidation–reduction potentials and nitrate levels.


2012 ◽  
Vol 66 (6) ◽  
pp. 1239-1246 ◽  
Author(s):  
Fernando Augusto Lopes de Assunção ◽  
Marcos von Sperling

This study aimed at determining the influence of ammonia volatilization on nitrogen removal in polishing (maturation) ponds treating sanitary effluent from upflow anaerobic sludge blanket (UASB) reactors in the city of Belo Horizonte, Brazil. An apparatus for the capture and absorption of volatilized ammonia in three polishing ponds in series was installed. Volatilized ammonia was captured by a chamber on the surface of the ponds and dissolved in boric acid solution, in order to estimate the amount of ammonia per unit surface area of each pond. Low rates of volatilization, below 0.2 kg/ha.d, in about 75% of samples from all the ponds, were observed. The mass balance of ammonia nitrogen of the ponds showed that the volatilization represented only about 2% of the total removal of nitrogen from the polishing ponds. The results obtained suggest that ammonia volatilization was a mechanism of little importance in nitrogen removal in the investigated polishing ponds.


2011 ◽  
Vol 63 (5) ◽  
pp. 877-884 ◽  
Author(s):  
P. Mijalova Nacheva ◽  
M. Reyes Pantoja ◽  
E. A. Lomelí Serrano

The performance of an upflow anaerobic sludge blanket (UASB) reactor operated at ambient temperature (20.9–25.2°C) was analysed for the treatment of slaughterhouse wastewater previously pre-treated for solid separation. The experimental work was carried out in a reactor with 15 L effective volume. Four organic loads were applied and the process performance was evaluated. The COD removal rate increased with the load rise from 4 to 15 kg COD.m−3.d−1. Removal efficiencies of 90% were obtained with a load of 15 kg COD.m−3.d−1. The entrapment of suspended solids in the sludge blanket was greater in proportion during the first two stages due to the low upflow velocities used when loads of 4 and 7 kg COD.m−3.d−1 were evaluated. This phenomenon did not affect the structure of the biological grains or their methanogenic activity. More than 50% of the organic nitrogen was degraded, causing a 3% increase of ammonia concentration. The concentrations of the volatile fatty acids were not high and the wastewater alkalinity was enough to prevent acidification. The yield coefficient of methane production increased with the load rise, reaching 0.266 m3/kg CODremoved at 15 kg COD.m−3.d−1 organic load. The UASB reactor is a good option for the biological treatment of pre-treated slaughterhouse wastewater. However, additional treatment is required in order to accomplish the water quality requirements in discharges to water bodies.


2014 ◽  
Vol 1073-1076 ◽  
pp. 297-300
Author(s):  
Jia Jing Sun ◽  
Lei Zhang ◽  
Luo Wang ◽  
Xiao Bo Chen

Anaerobic ammonium oxidation (anammox) process is a heated researched biotechnology for nitrogen removal in wastewater. The application of the process is limited due to its long start-up time and sensitivity to organic matters. This paper discussed the effects of acetate on anammox process. The nitrogen removal rate of anammox process was elevated at low acetate content (1 mmol/L) and decreased at high acetate content (3 and 4 mmol/L). The ratios among NH4+-N, NO2--N and NO3--N were not related acetate content and remained at 1:1.50:0.07, but the ratios between acetate and three forms of nitrogen were acetate dependent.


2010 ◽  
Vol 76 (8) ◽  
pp. 2652-2656 ◽  
Author(s):  
Bing-Jie Ni ◽  
Bao-Lan Hu ◽  
Fang Fang ◽  
Wen-Ming Xie ◽  
Boran Kartal ◽  
...  

ABSTRACT Anaerobic ammonium oxidation (anammox) is a promising new process to treat high-strength nitrogenous wastewater. Due to the low growth rate of anaerobic ammonium-oxidizing bacteria, efficient biomass retention is essential for reactor operation. Therefore, we studied the settling ability and community composition of the anaerobic ammonium-oxidizing granules, which were cultivated in an upflow anaerobic sludge blanket (UASB) reactor seeded with aerobic granules. With this seed, the start-up period was less than 160 days at a NH4 +-N removal efficiency of 94% and a loading rate of 0.064 kg N per kg volatile suspended solids per day. The formed granules were bright red and had a high settling velocity (41 to 79 m h−1). Cells and extracellular polymeric substances were evenly distributed over the anaerobic ammonium-oxidizing granules. The high percentage of anaerobic ammonium-oxidizing bacteria in the granules could be visualized by fluorescent in situ hybridization and electron microscopy. The copy numbers of 16S rRNA genes of anaerobic ammonium-oxidizing bacteria in the granules were determined to be 4.6 � 108 copies ml−1. The results of this study could be used for a better design, shorter start-up time, and more stable operation of anammox systems for the treatment of nitrogen-rich wastewaters.


Sign in / Sign up

Export Citation Format

Share Document