5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O2 biofuel cells

2017 ◽  
Vol 87 ◽  
pp. 957-963 ◽  
Author(s):  
Fabien Giroud ◽  
Koichi Sawada ◽  
Masahito Taya ◽  
Serge Cosnier
2019 ◽  
Vol 19 (6) ◽  
pp. 3551-3557 ◽  
Author(s):  
Hiroaki Sakamoto ◽  
Ayako Koto ◽  
Ei-Ichiro Takamura ◽  
Hitoshi Asakawa ◽  
Takeshi Fukuma ◽  
...  

For increasing the output of biofuel cells, increasing the cooperation between enzyme reaction and electron transfer on the electrode surface is essential. Highly oriented immobilization of enzymes onto a carbon nanotube (CNT) with a large specific surface area and excellent conductivity would increase the potential for their application as biosensors and biofuel cells, by utilizing the electron transfer between the electrode-molecular layer. In this study, we prepared a CNT-enzyme complex with highly oriented immobilization of enzyme onto the CNT surface. The complex showed excellent electrical characteristics, and could be used to develop biodevices that enable efficient electron transfer. Multi-walled carbon nanotubes (MWCNT) were dispersed by pyrene butyric acid N-hydroxysuccinimide ester, and then N-(5-amino-1-carboxypentyl) iminodiacetic acid (AB-NTA) and NiCl2 were added to modify the NTA-Ni2+ complex on the CNT surface. Pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) was immobilized on the CNT surface through a genetically introduced His-tag. Formation of the MWCNT-enzyme complex was confirmed by monitoring the catalytic current electrochemically to indicate the enzymatic activity. PQQ-GDH was also immobilized onto a highly ordered pyrolytic graphite surface using a similar process, and the enzyme monolayer was visualized by atomic force microscopy to confirm its structural properties. A biofuel cell was constructed using the prepared CNT-enzyme complex and output evaluation was carried out. As a result, an output of 32 μW/cm2 could be obtained without mediators.


2019 ◽  
Vol 19 (13) ◽  
pp. 55-60
Author(s):  
Shiunchin Wang ◽  
Anitha Patlolla ◽  
Zafar Iqbal

2016 ◽  
Vol 4 (22) ◽  
pp. 8742-8749 ◽  
Author(s):  
Keisei So ◽  
Yuki Kitazumi ◽  
Osamu Shirai ◽  
Koji Nishikawa ◽  
Yoshiki Higuchi ◽  
...  

H2/O2biofuel cells utilizing hydrogenases and multicopper oxidases as bioelectrocatalysts are clean, sustainable, and environmentally friendly power devices.


2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Abdelkader Zebda ◽  
Chantal Gondran ◽  
Alan Le Goff ◽  
Michael Holzinger ◽  
Philippe Cinquin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document