scholarly journals SERS imaging-based aptasensor for ultrasensitive and reproducible detection of influenza virus A

2020 ◽  
Vol 167 ◽  
pp. 112496 ◽  
Author(s):  
Hao Chen ◽  
Sung-Gyu Park ◽  
Namhyun Choi ◽  
Joung-Il Moon ◽  
Hajun Dang ◽  
...  
1980 ◽  
Vol 45 (5) ◽  
pp. 1595-1600 ◽  
Author(s):  
Jaroslav Sluka ◽  
František Šmejkal ◽  
Zdeněk Buděšínský

On recation of cyclooctylamine with the sulfate of S-methylisothiourea cyclooctylguanidine was formed which was acylated with the methyl esters of 5-halogeno- and 3,5-dihalogeno-2-alkoxybenzoic acids. The 1-acyl-3-cyclooctylguanidine I-XVII formed were tested for their antiviral effect against the influenza virus A/NWS, A-PR8 and A2 Singapore, and further against the viruses NDV, herpes 2, vaccinia and WEE. In the in vivo test against the influenza virus A2 Singapore and herpes simplex 1-(5-bromo-2-dodecyloxybenzoyl)-3-cyclooctylguanidine is more active and less toxic than cyclooctylamine and 1-cyclooctylguanidine.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3678
Author(s):  
Olga V. Andreeva ◽  
Bulat F. Garifullin ◽  
Vladimir V. Zarubaev ◽  
Alexander V. Slita ◽  
Iana L. Yesaulkova ◽  
...  

A series of 1,2,3-triazolyl nucleoside analogues in which 1,2,3-triazol-4-yl-β-d-ribofuranosyl fragments are attached via polymethylene linkers to both nitrogen atoms of the heterocycle moiety (uracil, 6-methyluracil, thymine, quinazoline-2,4-dione, alloxazine) or to the C-5 and N-3 atoms of the 6-methyluracil moiety was synthesized. All compounds synthesized were evaluated for antiviral activity against influenza virus A/PR/8/34/(H1N1) and coxsackievirus B3. Antiviral assays revealed three compounds, 2i, 5i, 11c, which showed moderate activity against influenza virus A H1N1 with IC50 values of 57.5 µM, 24.3 µM, and 29.2 µM, respectively. In the first two nucleoside analogues, 1,2,3-triazol-4-yl-β-d-ribofuranosyl fragments are attached via butylene linkers to N-1 and N-3 atoms of the heterocycle moiety (6-methyluracil and alloxazine, respectively). In nucleoside analogue 11c, two 1,2,3-triazol-4-yl-2′,3′,5′-tri-O-acetyl-β-d-ribofuranose fragments are attached via propylene linkers to the C-5 and N-3 atoms of the 6-methyluracil moiety. Almost all synthesized 1,2,3-triazolyl nucleoside analogues showed no antiviral activity against the coxsackie B3 virus. Two exceptions are 1,2,3-triazolyl nucleoside analogs 2f and 5f, in which 1,2,3-triazol-4-yl-2′,3′,5′-tri-O-acetyl-β-d-ribofuranose fragments are attached to the C-5 and N-3 atoms of the heterocycle moiety (6-methyluracil and alloxazine respectively). These compounds exhibited high antiviral potency against the coxsackie B3 virus with IC50 values of 12.4 and 11.3 µM, respectively, although both were inactive against influenza virus A H1N1. According to theoretical calculations, the antiviral activity of the 1,2,3-triazolyl nucleoside analogues 2i, 5i, and 11c against the H1N1 (A/PR/8/34) influenza virus can be explained by their influence on the functioning of the polymerase acidic protein (PA) of RNA-dependent RNA polymerase (RdRp). As to the antiviral activity of nucleoside analogs 2f and 5f against coxsackievirus B3, it can be explained by their interaction with the coat proteins VP1 and VP2.


2020 ◽  
Vol 15 (4) ◽  
pp. 819-823 ◽  
Author(s):  
Senlian Hong ◽  
Geramie Grande ◽  
Chenhua Yu ◽  
Digantkumar G. Chapla ◽  
Natalie Reigh ◽  
...  

2010 ◽  
Vol 171 (11) ◽  
pp. 1157-1164 ◽  
Author(s):  
T. Suess ◽  
U. Buchholz ◽  
S. Dupke ◽  
R. Grunow ◽  
Matthias an der Heiden ◽  
...  

2017 ◽  
Vol 23 (4) ◽  
pp. 335-344 ◽  
Author(s):  
Jose M Trevejo ◽  
Mohammed Asmal ◽  
Johan Vingerhoets ◽  
Ramon Polo ◽  
Sarah Robertson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document