ha gene
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 30)

H-INDEX

28
(FIVE YEARS 2)

Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1597
Author(s):  
Yurie Kida ◽  
Kosuke Okuya ◽  
Takeshi Saito ◽  
Junya Yamagishi ◽  
Aiko Ohnuma ◽  
...  

Highly pathogenic avian influenza viruses (HPAIVs) with H5 and H7 hemagglutinin (HA) subtypes are derived from their low pathogenic counterparts following the acquisition of multiple basic amino acids in their HA cleavage site. It has been suggested that consecutive adenine residues and a stem-loop structure in the viral RNA region that encodes the cleavage site are essential for the acquisition of the polybasic cleavage site. By using a reporter assay to detect non-templated nucleotide insertions, we found that insertions more frequently occurred in the RNA region (29 nucleotide-length) encoding the cleavage site of an H5 HA gene that was predicted to have a stem-loop structure containing consecutive adenines than in a mutated corresponding RNA region that had a disrupted loop structure with fewer adenines. In virus particles generated by using reverse genetics, nucleotide insertions that created additional codons for basic amino acids were found in the RNA region encoding the cleavage site of an H5 HA gene but not in the mutated RNA region. We confirmed the presence of virus clones with the ability to replicate without trypsin in a plaque assay and to cause lethal infection in chicks. These results demonstrate that the stem-loop structure containing consecutive adenines in HA genes is a key molecular determinant for the emergence of H5 HPAIVs.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2357
Author(s):  
Rabeh El-Shesheny ◽  
Jasmine C. M. Turner ◽  
David Walker ◽  
John Franks ◽  
Patrick Seiler ◽  
...  

Wild aquatic birds are the primary natural reservoir for influenza A viruses (IAVs). In this study, an A(H9N9) influenza A virus (A/duck/Bangladesh/44493/2020) was identified via routine surveillance in free-range domestic ducks in Bangladesh. Phylogenetic analysis of hemagglutinin showed that the H9N9 virus belonged to the Y439-like lineage. The HA gene had the highest nucleotide identity to A/Bean Goose (Anser fabalis)/South Korea/KNU 2019-16/2019 (H9N2). The other seven gene segments clustered within the Eurasian lineage.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2260
Author(s):  
Bao Tuan Duong ◽  
Jyotiranjan Bal ◽  
Haan Woo Sung ◽  
Seon-Ju Yeo ◽  
Hyun Park

Avian influenza virus (AIV) subtypes H5 and H7, possessing the ability to mutate spontaneously from low pathogenic (LP) to highly pathogenic (HP) variants, are major concerns for enormous socio-economic losses in the poultry industry, as well as for fatal human infections. Through antigenic drift and shift, genetic reassortments of the genotypes pose serious threats of increased virulence and pathogenicity leading to potential pandemics. In this study, we isolated the H7-subtype AIVs circulating in the Republic of Korea during 2018–2019, and perform detailed molecular analysis to study their circulation, evolution, and possible emergence as a zoonotic threat. Phylogenetic and nucleotide sequence analyses of these isolates revealed their distribution into two distinct clusters, with the HA gene sharing the highest nucleotide identity with either the A/common teal/Shanghai/CM1216/2017, isolated from wild birds in Shanghai, China, or the A/duck/Shimane/2014, isolated from Japan. Mutations were found in HA (S138A (H3 numbering)), M1 (N30D and T215A), NS1 (P42S), PB2 (L89V), and PA (H266R and F277S) proteins—the mutations had previously been reported to be related to mammalian adaptation and changes in the virulence of AIVs. Taken together, the results firmly put forth the demand for routine surveillance of AIVs in wild birds to prevent possible pandemics arising from reassortant AIVs.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2941-2941
Author(s):  
Jie Gong ◽  
Tsai-Hua Chung ◽  
Min Zhou ◽  
Lung-Ji Chang

Abstract Background :Hemophilia A (HA) is an X-linked monogenic coagulation disorder resulting from deficiency of the factor VIII (FVIII, F8) gene in the intrinsic coagulation cascade. The current treatment of HA is based on protein replacement therapy (PRT) through plasma-derived coagulation factors or recombinant proteins with limitations of short half-life, high cost, and life-time requirement of the treatment. Gene therapy has become a promising treatment for HA. Methods and Materials: We developed an advanced lentiviral vector (LV) system for intravenous (iv) F8 gene therapy. A selective codon optimized and B-domain deleted human F8 (hF8BDD) gene was synthesized, sequenced and functionally verified. LVs carrying a universal EF1α promoter, or several modified tissue-specific promoters including endothelial- (VEC), endothelial and epithelial- (KDR), and two megakaryocyte-specific (ITGA and Gp) promoters, were biologically and immunologically characterized in vitro using human endothelial and megakaryocytic cell lines, EA-hy926 and DAMI, and in vivo using F8 knockout (KO) mice. Results: We investigated the different LV promoter constructs and found that LV-VEC-F8BDD exhibited the highest virus packaging (1.3x10 9 transduction units/ml) and transduction efficiencies compared with the other LV constructs. Tissue-specific expression of the VEC, KDR, ITGA and Gp promoters was confirmed in EA-hy926 and DAMI cells by RT-PCR, Western blot and ELISA analyses. We detected F8 activities close to 6 folds and 4.5 folds above the normal plasma level from the EF1a LV-F8BDD transduced EA-hy926 cells and DAMI cells, respectively, whereas the VEC LV in EA-hy926 cells and the ITGA-LV in DAMI cells exhibited F8 activities at 1.5 folds and 5 folds above the normal plasma level, respectively. In vivo studies in F8 KO mice via iv injection of LVs after reduced radiation conditioning illustrated preferential vector expression in different cell lineages, with high expression of EF1a vector in CD11b, F4/80 and Ly-6G positive immune cells, and preferential expression of VEC vector in CD31 positive endothelial cells, and ITGA and Gp vectors in CD41 positive megakaryocytes. In addition, we detected variable phenotypic corrections as well as anti-F8 immune responses in the F8 KO mice treated with the different LVs. The iv deliveries of VEC and Gp F8BDD vectors illustrated therapeutic F8 activities over time, around 25% and 8%, respectively, in 60 days, which increased to high levels (80% and 25%, respectively) after 120 days (Figure A). Kinetic analyses of anti-F8 IgG and inhibitor titers (Bethesda assay) of the treated mice showed that the VEC vector exhibited the lowest F8 inhibitory immune response over time (Figure B). Conclusion: Based on the in vitro and in vivo studies, our results suggest that for HA gene therapy, optimal rather than high F8 expression is critical, and tissue-specific expression but not universal expression can reduce adverse inhibitor effect. We demonstrated that the LV-VEC-F8BDD vector displayed high tissue specificity in vivo, and high transgene delivery efficiency, high coagulation function and low immunogenicity. In addition, iv LV gene therapy could be a safe, convenient and effective HA gene therapy strategy. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 102 (11) ◽  
Author(s):  
Joshua E. Sealy ◽  
Wendy A. Howard ◽  
Eleonora Molesti ◽  
Munir Iqbal ◽  
Nigel J. Temperton ◽  
...  

Highly pathogenic H5N1 avian influenza viruses cause devastating outbreaks in farmed poultry with serious consequences for animal welfare and economic losses. Zoonotic infection of humans through close contact with H5N1 infected birds is often severe and fatal. England experienced an outbreak of H5N1 in turkeys in 1991 that led to thousands of farmed bird mortalities. Isolation of clonal populations of one such virus from this outbreak uncovered amino acid differences in the virus haemagglutinin (HA) gene whereby the different genotypes could be associated with distinct pathogenic outcomes in chickens; both low pathogenic (LP) and high pathogenic (HP) phenotypes could be observed despite all containing a multi-basic cleavage site (MBCS) in the HA gene. Using reverse genetics, three amino acid substitutions in HA were examined for their ability to affect pathogenesis in the chicken. Restoration of amino acid polymorphisms close to the receptor binding site that are commonly found in H5 viruses only partially improved viral fitness in vitro and in vivo. A third novel substitution in the fusion peptide, HA2G4R, enabled the HP phenotype. HA2G4R decreased the pH stability of HA and increased the pH of HA fusion. The substitutions close to the receptor binding site optimised receptor binding while modulating the pH of HA fusion. Importantly, this study revealed pathogenic determinants beyond the MBCS.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2057
Author(s):  
Eun-Jee Na ◽  
Young-Sik Kim ◽  
Yoon-Ji Kim ◽  
Jun-Soo Park ◽  
Jae-Ku Oem

H7 low pathogenic avian influenza viruses (LPAIVs) can mutate into highly pathogenic avian influenza viruses (HPAIVs). In addition to avian species, H7 avian influenza viruses (AIVs) also infect humans. In this study, two AIVs, H7N9 (20X-20) and H7N7 (34X-2), isolated from the feces of wild birds in South Korea in 2021, were genetically analyzed. The HA cleavage site of the two H7 Korean viruses was confirmed to be ELPKGR/GLF, indicating they are LPAIVs. There were no amino acid substitutions at the receptor-binding site of the HA gene of two H7 Korean viruses compared to that of A/Anhui/1/2013 (H7N9), which prefer human receptors. In the phylogenetic tree analysis, the HA gene of the two H7 Korean viruses shared the highest nucleotide similarity with the Korean H7 subtype AIVs. In addition, the HA gene of the two H7 Korean viruses showed high nucleotide similarity to that of the A/Jiangsu/1/2018(H7N4) virus, which is a human influenza virus originating from avian influenza virus. Most internal genes (PB2, PB1, PA, NP, NA, M, and NS) of the two H7 Korean viruses belonged to the Eurasian lineage, except for the M gene of 34X-2. This result suggests that active reassortment occurred among AIVs. In pathogenicity studies of mice, the two H7 Korean viruses replicated in the lungs of mice. In addition, the body weight of mice infected with 34X-2 decreased 7 days post-infection (dpi) and inflammation was observed in the peribronchiolar and perivascular regions of the lungs of mice. These results suggest that mammals can be infected with the two H7 Korean AIVs. Our data showed that even low pathogenic H7 AIVs may infect mammals, including humans, as confirmed by the A/Jiangsu/1/2018(H7N4) virus. Therefore, continuous monitoring and pathogenicity assessment of AIVs, even of LPAIVs, are required.


2021 ◽  
Vol 11 (3) ◽  
pp. 384-394
Author(s):  
Nahed Yehia ◽  
Fatma Amer ◽  
Abdelhafez Samir ◽  
Mohamed Samy ◽  
Ahmed Sedeek ◽  
...  

Poultry production has been affected by multiple respiratory diseases triggering serious economic losses in Egypt. The current study aimed to investigate the situation and genetic evolution of respiratory diseases in Egypt during 2020. A total of 53 samples were collected from infected flocks suffering from respiratory signs and variable mortality rates from nine governorates in Egypt during 2020. The collected samples were examined for the detection of respiratory disease viruses (Avian influenza virus (AIV (H5N8, H9N2), Infectious bronchitis virus (IBV), and Newcastle disease virus (NDV)) by rRT-PCR. The single infection was confirmed in 90.6% (37.7% I.B, 30.2% AIV (H5N8), 9.4% I.B and 5.7% NDV) and co-infection of HPAIV (H5N8) + I.BV and LPAIV (H9N2) +IBV were detected in 3.8% of nine governorates. The HA gene of HPAIV (H5N8) was cluster to clad 2.3.4.4.1b in a new branch with characteristic specific mutations especially in T140A in antigenic site A and R72S in the receptor-binding site, compared to A/duck/Egypt/F446/2017 with low A.A identity percent with vaccinal strains of H5N1 and H5N2 reaching to 91.9-94% and 84.6%, respectively. The HA gene of AIV (H9N2) belonged to A/quail/Hong Kong/G1/97-like virus clustered with group B with a specific mutation (212I) that may affect the human transmission of the virus. The HVRs of S1 gene of IBV cluster to GI23 (Egy Var I) clad with multiple mutations in HVR1 and HVR2, compared to IBV/CU/4/2014 and low identity percent (68.3-78.8%) with vaccine strains (H120, M41, 4/91). In conclusion, respiratory disease continues to circulate and rapidly evolve in Egypt during 2020.


2021 ◽  
Vol 8 (7) ◽  
pp. 134
Author(s):  
Nahed Yehia ◽  
Fatma Eldemery ◽  
Abdel-Satar Arafa ◽  
Ahmed Abd El Wahed ◽  
Ahmed El Sanousi ◽  
...  

The H9N2 subtype of avian influenza A virus (aIAV) is circulating among birds worldwide, leading to severe economic losses. H9N2 cocirculation with other highly pathogenic aIAVs has the potential to contribute to the rise of new strains with pandemic potential. Therefore, rapid detection of H9 aIAVs infection is crucial to control virus spread. A qualitative reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of aIAV subtype H9N2 was developed. All results were compared to the gold standard (real-time reverse transcription polymerase chain reaction (RT-PCR)). The RT-RPA assay was designed to detect the hemagglutinin (HA) gene of H9N2 by testing three pairs of primers and a probe. A serial concentration between 106 and 100 EID50 (50% embryo infective dose)/mL was applied to calculate the analytical sensitivity. The H9 RT-RPA assay was highly sensitive as the lowest concentration point of a standard range at one EID50/mL was detected after 5 to 8 min. The H9N2 RT-RPA assay was highly specific as nucleic acid extracted from H9 negative samples and from other avian pathogens were not cross detected. The diagnostic sensitivity when testing clinical samples was 100% for RT-RPA and RT-PCR. In conclusion, H9N2 RT-RPA is a rapid sensitive and specific assay that easily operable in a portable device for field diagnosis of aIAV H9N2.


2021 ◽  
Author(s):  
Nahed Yehia ◽  
Fatma Amer ◽  
Abdelhafez Samir ◽  
Mohamed Samy ◽  
Ahmed Sedeek ◽  
...  

Abstract Poultry production has affected by multiple respiratory disease triggering serious economic losses in Egypt. In this study, the situation and genetic evolution of respiratory disease in Egypt during 2020 were studied. We collected 53 samples from infected flocks suffered from respiratory signs and variable mortality rate from nine governorates in Egypt during 2020. The collected samples were examined for detection of respiratory disease viruses (Avian influenza virus (AIV), Infectious bronchitis virus (IBV), and Newcastle disease virus (NDV)) by rRT-PCR. The single infection was confirmed in 90.6% (37.7% I. B, 30.2% AIV (H5N8), 9.4% I. B and 5.7% NDV) and co-infection of HPAIV (H5N8) + I.BV and LPAIV (H9N2) +IBV were detected in 3.8% in nine governorates. The HA gene of HPAIV (H5N8) were cluster to clad 2.3.4.4.1b in new branch with characteristic specific mutations especially in T140A in antigenic site A and R72S in the receptor binding site when comparing with A/duck/Egypt/F446/2017 with low A.A identity percent with vaccinal strains (H5N1 and H5N2) reach to 91.9-94% and 84.6% respectively. The HA gene of AIV (H9N2) were belong to A/quail/Hong Kong/G1/97-like virus clustered with group B with specific mutation (212I) that may be effect on human transmission of the virus. The HVRs of S1 gene of IBV cluster to GI23 (Egy Var I) clad with multiple mutation in HVR1, HVR2 when comparing with IBV/CU/4/2014 and low identity percent (68.3%-78.8%) with vaccine strains (H120, M41, 4/91). In conclusion, the respiratory disease continues circulate and rapidly evolved in Egypt during 2020.


Author(s):  
Jessica Mateus-Anzola ◽  
Beatriz Martínez-López ◽  
Ana Cecilia Espinosa-García ◽  
Rafael Ojeda-Flores

The current COVID-19 pandemic highlights the need for zoonotic infectious disease surveillance. Avian influenza virus (AIV) poses a significant threat to animal and public health due to its pandemic potential. Virus-contaminated water has been suggested as an important AIV spread mechanism among multiple species. Nevertheless, few studies have characterized the global AIV subtype diversity and distribution in environmental water. Therefore, this study aims to provide an updated descriptive and phylogenetic analysis of AIVs isolated in water samples from high risk-sites for influenza outbreaks (i.e., live bird markets, poultry farms, and wild bird habitats) on a global scale. A total of 234 hemagglutinin (HA) gene sequences of 21 subtypes were reported from nine countries between 2003 – 2020. Fourteen AIV subtypes were solely reported from Asian countries. Most of the viral sequences were obtained in China and Bangladesh with 47.44% and 23.93%, respectively. Likewise, the greatest global AIV subtype diversity was observed in China with twelve subtypes. Live bird markets represented the main sampling site for AIV detection in water samples (64.10%), mostly from poultry cage water. Nevertheless, the highest subtype diversity was observed in water samples from wild bird habitats, especially from the Izumi plain and the Dongting Lake located in Japan and China, respectively. Water from drinking poultry troughs evidenced the greatest subtype diversity in live bird markets, meanwhile, environmental water used by ducks had the highest number of different subtypes in poultry farms. The maximum-likelihood phylogenetic tree showed that some HA sequences were closely related among different poultry/wild bird-related environments from different geographic origins. Therefore, the results suggest that even though the availability of HA gene sequences in public-access databases varies greatly among countries, environmental AIV surveillance represents a useful tool to elucidate potential viral diversity in wild and domestic bird populations.


Sign in / Sign up

Export Citation Format

Share Document