scholarly journals Sugar beet and volunteer potato classification using Bag-of-Visual-Words model, Scale-Invariant Feature Transform, or Speeded Up Robust Feature descriptors and crop row information

2018 ◽  
Vol 166 ◽  
pp. 210-226 ◽  
Author(s):  
Hyun K. Suh ◽  
Jan Willem Hofstee ◽  
Joris IJsselmuiden ◽  
Eldert J. van Henten
2019 ◽  
Vol 1 (3) ◽  
pp. 871-882 ◽  
Author(s):  
Mario Manzo ◽  
Simone Pellino

In recent years researchers have worked to understand image contents in computer vision. In particular, the bag of visual words (BoVW) model, which describes images in terms of a frequency histogram of visual words, is the most adopted paradigm. The main drawback is the lack of information about location and the relationships between features. For this purpose, we propose a new paradigm called bag of ARSRG (attributed relational SIFT (scale-invariant feature transform) regions graph) words (BoAW). A digital image is described as a vector in terms of a frequency histogram of graphs. Adopting a set of steps, the images are mapped into a vector space passing through a graph transformation. BoAW is evaluated in an image classification context on standard datasets and its effectiveness is demonstrated through experimental results compared with well-known competitors.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 353
Author(s):  
A Roshna Meeran ◽  
V Nithya

The paper focuses on the investigation of image processing of Electronic waste detection and identification in recycling process of all Electronic items. Some of actually collected images of E-wastes would be combined with other wastes. For object matching with scale in-variance the SIFT (Scale -Invariant- Feature Transform) is applied. This method detects the electronic waste found among other wastes and also estimates the amount of electronic waste detected the give set of wastes. The detection of electronics waste by this method is most efficient ways to detect automatically without any manual means.


2019 ◽  
Vol 8 (2) ◽  
pp. 6053-6057

Telugu language is one of the most spoken Indian languages throughout the world. Since it has an old heritage, so Telugu literature and newspaper publications can be scanned to identify individual words. Identification of Telugu word images poses serious problems owing to its complex structure and larger set of individual characters. This paper aims to develop a novel methodology to achieve the same using SIFT (Scale Invariant Feature Transform) features of telugu words and classifying these features using BoVW (bag of visual words). The features are clustered to create a dictionary using k-means clustering. These words are used to create a visual codebook of the word images and the classification is achieved through SVM (Support Vector Machine).


2017 ◽  
Vol 14 (3) ◽  
pp. 651-661 ◽  
Author(s):  
Baghdad Science Journal

There is a great deal of systems dealing with image processing that are being used and developed on a daily basis. Those systems need the deployment of some basic operations such as detecting the Regions of Interest and matching those regions, in addition to the description of their properties. Those operations play a significant role in decision making which is necessary for the next operations depending on the assigned task. In order to accomplish those tasks, various algorithms have been introduced throughout years. One of the most popular algorithms is the Scale Invariant Feature Transform (SIFT). The efficiency of this algorithm is its performance in the process of detection and property description, and that is due to the fact that it operates on a big number of key-points, the only drawback it has is that it is rather time consuming. In the suggested approach, the system deploys SIFT to perform its basic tasks of matching and description is focused on minimizing the number of key-points which is performed via applying Fast Approximate Nearest Neighbor algorithm, which will reduce the redundancy of matching leading to speeding up the process. The proposed application has been evaluated in terms of two criteria which are time and accuracy, and has accomplished a percentage of accuracy of up to 100%, in addition to speeding up the processes of matching and description.


Sign in / Sign up

Export Citation Format

Share Document