Intermittent aeration improving activated granular sludge granulation for nitrogen and phosphorus removal from domestic wastewater

2021 ◽  
pp. 100739
Author(s):  
Jiansheng Huang ◽  
Linji Xu ◽  
Yinying Guo ◽  
Deshao Liu ◽  
Shuangkou Chen ◽  
...  
2020 ◽  
Vol 305 ◽  
pp. 122961 ◽  
Author(s):  
Riccardo Campo ◽  
Sara Sguanci ◽  
Simone Caffaz ◽  
Lorenzo Mazzoli ◽  
Matteo Ramazzotti ◽  
...  

2000 ◽  
Vol 41 (10-11) ◽  
pp. 217-225 ◽  
Author(s):  
G.T. Seo ◽  
T.S. Lee ◽  
B.H. Moon ◽  
J.H. Lim ◽  
K.S. Lee

A submerged membrane bioreactor (SMBR) was operated in 2-stage intermittent aeration for simultaneous removal of organic matter, nitrogen and phosphorus. The system consists of two reactors with a total volume of 0.27 m3 (1st reactor 0.09 m3 and 2nd 0.18 m3). Real domestic wastewater was used as influent to the system. Membrane used for this experiment was hollow fiber polyethylene membrane with pore size of 0.1μm and effective surface area, 4 m2. The membrane was submerged in the 2nd reactor for suction type filtration. Experiment was carried out in two phases varying the time cycles of aeration and non-aeration. SRT was maintained at 25 days and HRT, 16–19 hours. MLSS concentration in the reactors was in the range of 2,700–3,400 mg/l. The MLSS internal recycling ratio was maintained at 100% of influent flow rate. When time cycles of aeration and non-aeration were set at 30/90 min and 60/60 min in reactor 1 and 2, the removal of BOD and COD was 98.3% and 95.6%, respectively. A relatively low nitrogen and phosphorus removal was observed in this condition (73.6% as T–N and 46.6% as T–P). However, with 60/60 min intermittent aeration conditions for both reactors, the removal rate of nitrogen and phosphorus for two weeks steady state were enhanced to 91.6% as TN and 66% as TP, respectively. Further a high organic removal (98% BOD and 96.2% COD) was achieved too. In these conditions, the membrane of flux declined from 0.1 m/d to 0.08 m/d and suction filtration was at 10–12 kPa for a month long operation period.


2011 ◽  
Vol 63 (5) ◽  
pp. 885-890 ◽  
Author(s):  
Q. Chen ◽  
L. Qu ◽  
G. Tong ◽  
J. Ni

To improve the efficiency of low-strength domestic wastewater treatment, an immobilised-microorganism biological aerated filter (I-BAF) was established for simultaneous carbon, nitrogen and phosphorus removal. The I-BAF performance was systematically evaluated under continuous and intermittent aeration modes. At the optimal condition with an intermittent aeration control schedule of 2 h on/1 h off, the maximum removal rates of COD, NH4+-N, TN and P were 82.54%, 94.83%, 51.85% and 61.49%, respectively, and the corresponding averaged effluents could meet the first class standards of China. Further analysis of PCR-DGGE profile revealed that members of the gamma and alpha proteobacterium bacterial groups were probably responsible for the nitrogen and phosphorus removal. The I-BAF system showed excellent performance in carbon and nutrients removal, which provided a cost-effective solution for the treatment of low-strength domestic wastewater.


1991 ◽  
Vol 24 (10) ◽  
pp. 231-237
Author(s):  
W. G. Werumeus Buning ◽  
F. W. A. M. Rijnart ◽  
P. P. Weesendorp

To meet two levels of nitrogen and phosphorus removal (effluent standards Ntot 20 and 10 mg/l and Ptot 2 and 1 mg/l respectively) various systems were compared in a desk study. After a cost estimate and an assessment f the advantages and drawbacks, the oxidation ditch with biological by pass phosphate removal turned out to be the best system.


Sign in / Sign up

Export Citation Format

Share Document