cuo nps
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 170)

H-INDEX

20
(FIVE YEARS 6)

2022 ◽  
Vol 32 (1) ◽  
Author(s):  
Kanika Dulta ◽  
Gözde Koşarsoy Ağçeli ◽  
Parveen Chauhan ◽  
Rohit Jasrotia ◽  
P. K. Chauhan ◽  
...  

AbstractRhizome extract of Bergenia ciliata was used as a bio-functional reducing material for the green synthesis of copper oxide nanoparticles (CuO NPs). CuO NPs were characterized using ultraviolet–visible spectroscopy, Fourier transforms infrared spectroscopy, X-ray diffraction (XRD), dynamic light scattering, scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). XRD analysis revealed the monoclinic phase of synthesized CuO NPs with an average particle size of 20 nm. Spherical shaped nanoscale CuO particles were observed by EDX and SEM confirming the Cu and O presence in the synthesized NPs. CuO NPs showed antibacterial effects against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Salmonella typhi. The antioxidant effect was measured and IC50 values for 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl and Ferric reducing antioxidant power assays were found to be 91.2, 72.4 and 109 μg mL− 1 respectively. Under sunlight, the CuO NPs reported extraordinary photocatalytic activity against Methylene Blue and Methyl Red degradation with efficiencies of 92–85%. CuO NPs have excellent potential application for the photocatalytic degradation of organic pollutants and in the development of antibacterial materials. This study offers new insights in the field of inexpensive and green synthesis-based antimicrobial effective CuO photocatalysts from B. ciliata to remove harmful dyes from industrial-based waters with high degradation efficiency, which is environmentally friendly.


Author(s):  
Nabeel Kadhim Abbood ◽  
Abdolrahman obeidavi ◽  
Seyednooroldin Hosseini

AbstractIn the current study, the effect of CuO nanoparticles (CuO-NPs) at the presence of dodecyl-3-methylimidazolium chloride ([C12mim][Cl]) is investigated on the interfacial tension (IFT) reduction, wettability alteration, and even tertiary oil recovery. Since the prepared solutions with CuO-NPs are completely dark and it is impossible to measure the IFT of these solutions in the presence of crude oil using the pendant drop method (since one of the phases must be transparent for IFT measurement using the pendant drop method), n-heptane (representative of saturates) and toluene (representative of aromatics) are used only for IFT measurement of solutions prepared by CuO-NPs, while rest of the experiments are performed using crude oil. The obtained results reveal that CuO-NPs are not stable in the aqueous solution in the absence of surfactant which means fast precipitation of CuO-NPs and a high risk of pore plugging. In this way, the stability of CuO-NPs is investigated at the presence of dodecyl-3-methyl imidazolium chloride ([C12mim][Cl]) as an effective surfactant for stabilizing the CuO-NPs in the aqueous solution (more than 1 month without precipitation using 1000 ppm of IL). Further measurements reveal that although the presence of IL in the aqueous solution can reduce the IFT of oil/aqueous solution system, especially for the aqueous solutions prepared by formation brine (0.65 mN.m−1), the presence of CuO-NPs has no considerable effect on the IFT. On the other hand, not only the contact angle (CA) measurements reveal the considerable effect of IL on the wettability alteration toward water-wet condition (68.3° for IL concentration of 1000 ppm) but also the addition of CuO-NPs can significantly boost the wettability alteration toward strongly water-wet condition (23.4° for the concentration of 1000 ppm of CuO-NPs). Finally, several core flooding experiments are performed using different combinations of chemicals to find the effect of these chemicals on the tertiary oil recovery factor. The results reveal that the presence of CuO-NPs can enhance the oil recovery of injected chemical slug (aqueous solution prepared by dissolution of IL with an oil recovery factor of 10.1% based on Original oil in place (OOIP)) to 13.8, %, 16.9%, and 21.2% based on OOIP if 500, 1000, 2000 ppm of CuO-NPs existed in the solution concomitant with 1000 ppm of [C12mim][Cl].


2022 ◽  
pp. 103681
Author(s):  
Jianpeng Chen ◽  
Bikash Karmakar ◽  
Mohamed A. Salem ◽  
Abdullah Y. Alzahrani ◽  
Mutasem Z. Bani-Fwaz ◽  
...  

2021 ◽  
Vol 29 (6) ◽  
pp. 47-53
Author(s):  
M. A. Zemlyanova ◽  
M. S. Stepankov ◽  
A. M. Ignatova

Introduction. Active use in various spheres of economic activity and the large-scale nature of production determine the relevance of studying the effects of copper (II) oxide nanoparticles (CuO NPs) on the body during the oral route of intake. Material and methods. Particle size was determined by scanning electron microscopy and dynamic laser light scattering; specific surface area - Brunauer, Emmett and Teller; total pore volume - Barrett, Joyner and Khalenda. Acute oral toxicity of CuO NPs was studied in Wistar rats in accordance with GOST 32644-2014, multiple oral toxicity was studied by the Lim method. After repeated exposure, the biochemical and hematological parameters of the blood, the concentration of copper in the organs, and pathomorphological changes in the tissues of the organs were determined. Results. The size of CuO NPs in the composition of the native powder was 45.86 nm, in the aqueous suspension - 307.40 nm, the specific surface area was 17.70 m2/g, and the total pore volume was 0.056 cm3/g. According to the results of a single oral exposure, the LD50 value was > 2000 mg / kg body weight, which corresponds to 3 (GOST 12.1.007-76) and 4 (GOST 32644-2014) hazard classes. With repeated oral exposure, an increase in the levels of activity of ALT, AST, ALP, LDH, amylase, AOA and MDA was noted; the relative number of segmented neutrophils is increased, the number of leukocytes is increased, the relative number of lymphocytes is reduced. The concentration of copper under the action of NPs increases in the lungs, liver, stomach, intestines, kidneys, brain and blood. Pathomorphological changes in the tissues of the liver, kidneys, stomach, small and large intestines and lungs were established. Conclusion. The results obtained prove the presence of toxic properties of CuO NPs and can be used in the development of preventive measures for workers and consumers in contact with products containing CuO NPs.


2021 ◽  
Vol 29 (6) ◽  
pp. 39-46
Author(s):  
Marina Petrovna Sutunkova ◽  
Larisa Ivanovna Privalova ◽  
Yuliya Vladimirovna Ryabova ◽  
Ilzira Amirovna Minigalieva ◽  
Anastasiya Valeryevna Tazhigulova ◽  
...  

Introduction. Professional contact with selenium, copper and their compounds, including nanoscale forms, occurs in the metallurgical processes of copper sludge processing, copper pyrite roasting, manganese, selenium and tellurium production. The wide prevalence of selenium and copper oxide nanoparticles (SeO and CuO NPs) necessitates a comparative experimental assessment of its toxicity. Materials and methods. The copper or selenium oxide nanoparticle suspensions or a deionized water were intratracheally administered to female rats at single time. The bronchoalveolar lavage fluid (BALF) was obtained 24 hours after administration. There were evaluated the cellular composition and the biochemical parameters of the BALF. Results. The changes in the cellular composition of BALF demonstrate the SeO-NP and CuO-NP have a cytotoxic effect. The BALF biochemical indices were changed to a greater extent under CuO-NP. However, the phagocytic capacity of alveolar macrophages is activated under the SeO-NP. Conclusion. The SeO-NP and CuO-NP have a cytotoxic effect. SeO-NP have a positive effect on pulmonary phagocytosis, which can presumably be associated with selenium is a biomicroelement.


Author(s):  
S. Alwin David ◽  
P. Subramanian

Aims: To determine the antibacterial activity of CuO nanoparticles (CuO NPs) synthesized by Justicia adhatoda leaf extract. Study Design:  Synthesis, characterization and antibacterial activity determination of CuO NPs. Place and Duration of Study: PG and Research Department of Chemistry, V.O.Chidambaram College, Tuticorin, Tamilnadu, India, between April 2019 and April 2020. Methodology: CuO NPs were synthesised using Justicia adhatoda leaf extract. UV-Visible spectroscopy was used to characterize CuO NPs. The role of biomolecules in plant extract in the formation of the CuO NPs was identified using Fourier transform infrared spectroscopy. The particle size and lattice properties of CuO NPs were determined using XRD. The surface morphology of CuO NPs was studied using SEM. The presence of Cu and O in CuO NPs was confirmed using EDAX analysis. Bacterial antimicrobial activity was investigated. Results: An absorbance band at 285 nm in the UV–visible spectrum clearly revealed the formation of CuO NPs. In the FTIR, CuO NPs had a distinct absorption peak at 608 cm-1, confirming metal–oxygen stretching in Cu-O nanostructures. The presence of crystalline CuO NPs was confirmed by XRD patterns, and they were found to be spherical in shape with a size range of 23.21–37.57 nm, as evidenced by FESEM. The biosynthesized CuO NPs exhibited a strong antibacterial activity against Staphylococcus epidermidis and Bacillus cereus bacteria. Conclusion: Justicia adhatoda leaf extract mediated CuO NPs have shown significant antibacterial activity and they are considered potent antibacterial agents.


2021 ◽  
Author(s):  
Benamara Maroua ◽  
Amrani Amina ◽  
Zaidi Hadjer ◽  
Sedrati Fateh ◽  
Bouroumana Selma ◽  
...  

Abstract Our study focused on the evaluation of the toxicity of copper oxide nanoparticles (CuO-NPs) on a bioindicator; the land snail Helix aspersa. Their effects were studied by a targeted approach in the laboratory, by evaluating the oxidative stress biomarkers in hepatopancreas and kidney (GSH, GST, GPx, CAT, and LPO). The snails were exposed to increasing concentrations (50, 100, 150, and 200 mg/kg) of CuO-NPs mixed in wheat flour during a sub-chronic treatment period of 45 days. Our results show that: CuO-NPs can induce oxidative stress, by producing reactive oxygen species (ROS), which was confirmed by the decrease in glutathione (GSH) level and reduction of its metabolizing enzyme glutathione-s-transferase (GST) in both organs, as they trigger the detoxification system resulting in increased activity of the glutathione peroxidase (GPx) and catalase defense enzyme and lipide peroxidation indices within the hepatopancreas.


2021 ◽  
Vol 15 (3) ◽  
Author(s):  
Ali Davari ◽  
Vahid Hakimzadeh ◽  
Elham Mahdian ◽  
Mostafa Shahidi-Noghabi

In this work, we have synthesized copper oxide nanoparticles using Iranian violaceae flower extract and explored its biological activity. Green synthesis has emerged as a reliable, sustainable and ecofriendly protocol for synthesizing a wide range of nanomaterials and hybrid materials. In this paper, we report the synthesis of Copper oxide nanoparticles by a simple biological route using the extract of Iranian violaceae flower and CuSO4, 5 H2O was used to synthesis the copper oxide Nanoparticles. The synthesized copper oxide nanoparticles were characterized using UV–visible spectroscopy, FTIR spectroscopy, FESEM, EDAX, and XRD techniques. UV –Visible analysis shows a characteristic peak around 266 nm for copper oxide nanoparticles and which is characteristic copper oxide nanoparticles. FTIR spectroscopy was used to characterize various capping and reducing agents present in the plant extract responsible for nanoparticle formation. The surface morphology was characterized using FESEM. The EDAX and XRD pattern suggested that prepared copper oxide nanoparticles were highly pure. The average particle size was calculated as 78.5 nm and α-copper oxide for all diffraction peaks (JCPDS card No. 41-1449) using the XRD technique. Our finding also support the synthesis of CuO NPs from Iranian violaceae flower sources due to relative abundance of plants for the production of reducing and stabilizing agents required for CuO NPs synthesis, potential efficiency of plant biomolecules in enhancing the toxicity effect of CuO NPs against microbes, prevention of environmental pollution due of nontoxic chemicals and degradation effectiveness of CuO NPs synthesized from plant sources. Furthermore, this study provides useful information on the rapid synthesis of CuO NPs with desired properties from plant extracts. Copper oxide NPs can have a good candidate for different applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Cao ◽  
Hayder A. Dhahad ◽  
M. A. El-Shorbagy ◽  
Hajar Q. Alijani ◽  
Mana Zakeri ◽  
...  

AbstractIn this study, a simple and green strategy was reported to prepare bimetallic nanoparticles (NPs) by the combination of zinc oxide (ZnO) and copper oxide (CuO) using Sambucus nigra L. extract. The physicochemical properties of these NPs such as crystal structure, size, and morphology were studied by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), and transmission electron microscopy (TEM). The results suggested that these NPs contained polygonal ZnO NPs with hexagonal phase and spherical CuO NPs with monoclinic phase. The anticancer activity of the prepared bimetallic NPs was evaluated against lung and human melanoma cell lines based on MTT assay. As a result, the bimetallic ZnO/CuO NPs exhibited high toxicity on melanoma cancer cells while their toxicity on lung cancer cells was low.


2021 ◽  
Vol 22 (23) ◽  
pp. 12913
Author(s):  
Nan-Fu Chen ◽  
Yu-Hsiang Liao ◽  
Pei-Ying Lin ◽  
Wu-Fu Chen ◽  
Zhi-Hong Wen ◽  
...  

The proliferation of drug-resistant pathogens continues to increase, giving rise to serious public health concerns. Many researchers have formulated metal oxide nanoparticles for use as novel antibacterial agents. In the present study, copper oxide (CuO) was synthesized by simple hydrothermal synthesis, and doping was performed to introduce different polymers onto the NP surface for bacteriostasis optimization. The polymer-modified CuO NPs were analyzed further with XRD, FTIR, TEM, DLS and zeta potential to study their morphology, size, and the charge of the substrate. The results indicate that polymer-modified CuO NPs had a significantly higher bacteriostatic rate than unmodified CuO NPs. In particular, polydopamine (PDA)-modified CuO (CuO-PDA) NPs, which carry a weakly negative surface charge, exhibited excellent antibacterial effects, with a bacteriostatic rate of up to 85.8 ± 0.2% within 3 h. When compared to other polymer-modified CuO NPs, CuO-PDA NPs exhibited superior bacteriostatic activity due to their smaller size, surface charge, and favorable van der Waals interactions. This may be attributed to the fact that the CuO-PDA NPs had relatively lipophilic structures at pH 7.4, which increased their affinity for the lipopolysaccharide-containing outer membrane of the Gram-negative bacterium Escherichia coli.


Sign in / Sign up

Export Citation Format

Share Document