The elective management of maxillofacial trauma: improving surgical outcomes using computer-aided design and rapid prototyping for patient-specific solutions

2016 ◽  
Vol 54 (10) ◽  
pp. e117
Author(s):  
Saadia Farooq ◽  
Garreth Robinson ◽  
Bethan Edwards ◽  
Ezra Burke
2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771038 ◽  
Author(s):  
Isad Saric ◽  
Adil Muminovic ◽  
Mirsad Colic ◽  
Senad Rahimic

This article presents architecture of integrated intelligent computer-aided design system for designing mechanical power-transmitting mechanisms (IICADkmps). The system has been developed in C# program environment with the aim of automatising the design process. This article presents a modern, automated approach to design. Developed kmps modules for calculation of geometrical and design characteristics of mechanical power-transmitting mechanisms are described. Three-dimensional geometrical parameter modelling of mechanical power-transmitting mechanisms was performed in the computer-aided design/computer-aided manufacturing/computer-aided engineering system CATIA V5. The connection between kmps calculation modules and CATIA V5 modelling system was established through initial three-dimensional models – templates. The outputs from the developed IICADkmps system generated final three-dimensional virtual models of mechanical power-transmitting mechanisms. Testing of the developed IICADkmps system was performed on friction, belt, cogged (spur and bevel gears) and chain transmitting mechanisms. Also, connection of the developed IICADkmps system with a device for rapid prototyping and computer numerical control machines was made for the purpose of additional testing and verification of practical use. Physical prototypes of designed characteristic elements of mechanical power-transmitting mechanisms were manufactured. The selected test three-dimensional virtual prototypes, obtained as an output from the developed IICADkmps system, were manufactured on the device for rapid prototyping (three-dimensional colour printer Spectrum Z510) and computer numerical control machines. Finally, at the end of the article, conclusions and suggested possible directions of further research, based on theoretical and practical research results, are presented.


2013 ◽  
Vol 404 ◽  
pp. 754-757 ◽  
Author(s):  
Ludmila Novakova-Marcincinova ◽  
Jozef Novak-Marcincin

Rapid Prototyping (RP) can be defined as a group of techniques used to quickly fabricate a scale model of a part or assembly using three-dimensional Computer Aided Design (CAD) data. What is commonly considered to be the first Rapid Prototyping technique, Stereolithography was developed by 3D Systems of Valencia, CA, USA. The company was founded in 1986, and since then, a number of different Rapid Prototyping techniques have become available. In paper are presented possibilities of Rapid Prototyping application in area of intelligent optimization design.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Chenxi Huang ◽  
Yisha Lan ◽  
Sirui Chen ◽  
Qing Liu ◽  
Xin Luo ◽  
...  

Despite the new ideas were inspired in medical treatment by the rapid advancement of three-dimensional (3D) printing technology, there is still rare research work reported on 3D printing of coronary arteries being documented in the literature. In this work, the application value of 3D printing technology in the treatment of cardiovascular diseases has been explored via comparison study between the 3D printed vascular solid model and the computer aided design (CAD) model. In this paper, a new framework is proposed to achieve a 3D printing vascular model with high simulation. The patient-specific 3D reconstruction of the coronary arteries is performed by the detailed morphological information abstracted from the contour of the vessel lumen. In the process of reconstruction which has 5 steps, the morphological details of the contour view of the vessel lumen are merged along with the curvature and length information provided by the coronary angiography. After comparing with the diameter of the narrow section and the diameter of the normal section in CAD models and 3D printing model, it can be concluded that there is a high correlation between the diameter of vascular stenosis measured in 3D printing models and computer aided design models. The 3D printing model has high-modeling ability and high precision, which can represent the original coronary artery appearance accurately. It can be adapted for prevascularization planning to support doctors in determining the surgical procedures.


Author(s):  
Ganzi Suresh ◽  
K. L. Narayana

Rapid prototyping (RP) advancements are in light of the rule of making three-dimensional geometries straightforwardly from computer aided design (CAD) by stacking two-dimensional profiles on top of one another. Rapid manufacturing (RM) is the utilization of rapid prototyping advancements to make end-utilize or completed items. Aside from the ordinary assembling methods which are utilized for quite a while assembling of an item, added substance assembling methodologies have picked up force in the late years. The explanation for this is that these techniques don't oblige extraordinary tooling and don't evacuate material which is exceptionally advantageous really taking shape of a segment. Rapid manufacturing is the developing innovation in assembling commercial ventures with a specific end goal to create the model inside the less time and expense effective. In this paper we talked about a portion of the fast assembling advancements in light of the sort of crude material is utilized for the procedures, applications, preferences and limits.


Sign in / Sign up

Export Citation Format

Share Document