Effects of suberoylanilide hydroxamic acid and trichostatin A on induction of cytochrome P450 enzymes and benzo[a]pyrene DNA adduct formation in human cells

2005 ◽  
Vol 15 (5) ◽  
pp. 1283-1287 ◽  
Author(s):  
Louisa A. Hooven ◽  
Brinda Mahadevan ◽  
Channa Keshava ◽  
Christopher Johns ◽  
Cliff Pereira ◽  
...  
1998 ◽  
Vol 56 (5) ◽  
pp. 599-612 ◽  
Author(s):  
Wei Li ◽  
Patricia A Harper ◽  
Bing-Kou Tang ◽  
Allan B Okey

Mutagenesis ◽  
2019 ◽  
Author(s):  
Lindsay Reed ◽  
Ian W H Jarvis ◽  
David H Phillips ◽  
Volker M Arlt

Abstract The environmental carcinogen benzo[a]pyrene (BaP) is presumed to exert its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. However, studies using the Hepatic Reductase Null (HRN) mouse model, in which cytochrome P450 oxidoreductase (POR), the electron donor to CYP enzymes, is deleted specifically in hepatocytes, have shown that loss of hepatic POR-mediated CYP function leads to greater BaP-DNA adduct formation in livers of these mice than in wild-type (WT) mice. Here, we used CRISPR/Cas9 technology to knockout (KO) POR expression in mouse hepatoma Hepa1c1c7 cells to create an in vitro model that can mimic the HRN mouse model. Western blotting confirmed the deletion of POR in POR KO Hepa1c1c7 cells whereas expression of other components of the mixed-function oxidase system including cytochrome b5 (Cyb5) and NADH:cytochrome b5 reductase (which can also serve as electron donors to CYP enzymes), and CYP1A1 was similar in BaP-exposed WT and POR KO Hepa1c1c7 cells. BaP exposure caused cytotoxicity in WT Hepa1c1c7 cells but not in POR KO Hepa1c1c7 cells. In contrast, CYP-catalysed BaP-DNA adduct levels were ~10-fold higher in POR KO Hepa1c1c7 cells than in WT Hepa1c1c7 cells, in concordance with the presence of higher levels of BaP metabolite (e.g. BaP-7,8-dihydrodiol) in the medium of cultured BaP-exposed POR KO Hepa1c1c7 cells. As was seen in the HRN mouse model, these results suggest that Cyb5 contributes to the bioactivation of BaP in POR KO Hepa1c1c7 cells. These results indicate that CYP enzymes may play a more important role in the detoxication of BaP, as opposed to its bioactivation.


Sign in / Sign up

Export Citation Format

Share Document