p450 reductase
Recently Published Documents


TOTAL DOCUMENTS

607
(FIVE YEARS 50)

H-INDEX

58
(FIVE YEARS 4)

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6654
Author(s):  
Xian Zou ◽  
Yue Zhang ◽  
Xu Zeng ◽  
Tuo Liu ◽  
Gui Li ◽  
...  

Ginseng (Panax ginseng C.A. Mey.) is a precious Chinese traditional medicine, for which ginsenosides are the most important medicinal ingredients. Cytochrome P450 enzymes (CYP450) and their primary redox molecular companion NADPH cytochrome P450 reductase (CPR) play a key role in ginsenoside biosynthesis pathway. However, systematic studies of CPR genes in ginseng have not been reported. Numerous studies on ginsenoside synthesis biology still use Arabidopsis CPR (AtCPR1) as a reductase. In this study, we isolated two CPR genes (PgCPR1, PgCPR2) from ginseng adventitious roots. Phylogenetic tree analysis showed that both PgCPR1 and PgCPR2 are grouped in classⅡ of dicotyledonous CPR. Enzyme experiments showed that recombinant proteins PgCPR1, PgCPR2 and AtCPR1 can reduce cytochrome c and ferricyanide with NADPH as the electron donor, and PgCPR1 had the highest enzymatic activities. Quantitative real-time PCR analysis showed that PgCPR1 and PgCPR2 transcripts were detected in all examined tissues of Panax ginseng and both showed higher expression in stem and main root. Expression levels of the PgCPR1 and PgCPR2s were both induced after a methyl jasmonate (MeJA) treatment and its pattern matched with ginsenoside accumulation. The present investigation suggested PgCPR1 and PgCPR2 are associated with the biosynthesis of ginsenoside. This report will assist in future CPR family studies and ultimately improving ginsenoside production through transgenic engineering and synthetic biology.


2021 ◽  
Vol 22 (19) ◽  
pp. 10625
Author(s):  
Freeborn Rwere ◽  
Sangchoul Im ◽  
Lucy Waskell

Cytochrome P450 reductase (CYPOR) provides electrons to all human microsomal cytochrome P450s (cyt P450s). The length and sequence of the “140s” FMN binding loop of CYPOR has been shown to be a key determinant of its redox potential and activity with cyt P450s. Shortening the “140s loop” by deleting glycine-141(ΔGly141) and by engineering a second mutant that mimics flavo-cytochrome P450 BM3 (ΔGly141/Glu142Asn) resulted in mutants that formed an unstable anionic semiquinone. In an attempt to understand the molecular basis of the inability of these mutants to support activity with cyt P450, we expressed, purified, and determined their ability to reduce ferric P450. Our results showed that the ΔGly141 mutant with a very mobile loop only reduced ~7% of cyt P450 with a rate similar to that of the wild type. On the other hand, the more stable loop in the ΔGly141/Glu142Asn mutant allowed for ~55% of the cyt P450 to be reduced ~60% faster than the wild type. Our results reveal that the poor activity of the ΔGly141 mutant is primarily accounted for by its markedly diminished ability to reduce ferric cyt P450. In contrast, the poor activity of the ΔGly141/Glu142Asn mutant is presumably a consequence of the altered structure and mobility of the “140s loop”.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dan He ◽  
Zeqing Feng ◽  
Song Gao ◽  
Yunyun Wei ◽  
Shuaishuai Han ◽  
...  

Fusarium species exhibit significant intrinsic resistance to most antifungal agents and fungicides, resulting in high mortality rates among immunocompromised patients. Consequently, a thorough characterization of the antifungal resistance mechanism is required for effective treatments and for preventing fungal infections and reducing antifungal resistance. In this study, an isolate of Fusarium oxysporum (wild-type) with broadly resistant to commonly antifungal agents was used to generate 1,450 T-DNA random insertion mutants via Agrobacterium tumefaciens-mediated transformation. Antifungal susceptibility test results revealed one mutant with increased sensitivity to azoles. Compared with the resistant wild-type, the mutant exhibited low MICs to KTZ, ITC, VRC, POS, and PCZ (0.125, 1, 0.06, 0.5, and 0.125μg/ml, respectively). The T-DNA insertion site of this mutant was characterized as involving two adjacent genes, one encoding a hypothetical protein with unknown function and the other encoding the NADPH-cytochrome P450 reductase, referred as CPR1. To confirm the involvement of these genes in the altered azole susceptibility, the independent deletion mutants were generated and the Cpr1 deletion mutant displayed the same phenotypes as the T-DNA random mutant. The deletion of Cpr1 significantly decreased ergosterol levels. Additionally, the expression of the downstream Cyp51 gene was affected, which likely contributed to the observed increased susceptibility to azoles. These findings verified the association between Cpr1 and azole susceptibility in F. oxysporum. Furthermore, this gene may be targeted to improve antifungal treatments.


2021 ◽  
Vol 14 (02) ◽  
pp. 681-689
Author(s):  
Hesti L. Wiraswati ◽  
Fida M. Warganegara ◽  
Akhmaloka Akhmaloka ◽  
Muhamad A. Martoprawiro

Understanding the metabolism of cytotoxic compounds of quinone family is importance in cancer therapy because they have been successfully explored for their anti-tumor activity. Quinone which form radical semiquinone (by reductase enzymes) to generate Reactive Oxygen Species (ROS) is associated to be anticancer drug candidate. However, molecular mechanism of those compounds to reductase enzymes has not yet clearly understood.This study aimed to understand molecular interaction of quinones to oxidoreductase enzymes such as cytochrome P450 reductase or ubiquinone reductase (NQO1), or apoptosis inducing factor (AIF) which is recently reported as NADH:quinone reductase. In silico approach was applied to find the best affinity of each compound to enzymes. Optimize ligands were employed using Marvin sketch program. Molecular interaction using autodockvina software was built to measure important residues for quinone reduction. Docking analysis showed that generally quinones prefer bound to cytochrome P450 reductase rather than NQO1 or AIF. The number of ring seems affect to the affinity, but not for its functional groups. Residues analysis confirmed that reduction of quinone is NAD(P)H: dependent. The result revealedthat all ligands have high possibility to compete with their redox coupleswhich is needed in its capacity as an anti-cancer drug.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 329
Author(s):  
Dolors Bosch-Serra ◽  
Marcela A. Rodríguez ◽  
Jesús Avilla ◽  
María José Sarasúa ◽  
Xavier Miarnau

Cacopsylla pyri (L.) (Hemiptera: Psyllidae) is a key pest of pear orchards in Spain. The large number of insecticide treatments necessary for control may be an important contributor to the emergence of resistance. Laboratory toxicity and biochemical assays are necessary to validate the existence of insecticide resistance and establish the underlying mechanisms. All the methodologies developed to evaluate enzyme activity in C. pyri to date have incorporated “pools” of adults to detect minimum activity ranges. In this study, we determined the optimal working conditions for evaluation of the activities of esterase, glutathione S-transferase and NADPH-cytochrome P450 reductase in individual insects via colorimetric methods using a microplate reader. The main factors affecting enzymatic analysis activity, such as enzyme source and substrate concentration, filter wavelength, buffer pH, reaction time and additives, were evaluated for optimization. Determining the frequency of resistant individuals within a population could be used as an indicator for the evolution of insecticide resistance over time. Two laboratory strains, one of them selected with cypermethrin, and two field populations were analyzed for this purpose. The data obtained revealed high values and great variation in the activity ranges of esterase (EST) in the insecticide-selected population as well as in the field populations validating the applied methodology.


2021 ◽  
Author(s):  
Julie Ducharme ◽  
Irina F. Sevrioukova ◽  
Christopher J. Thibodeaux ◽  
Karine Auclair

AbstractCytochrome P450 3A4 (CYP3A4) is the most important drug-metabolizing enzyme in humans and has been associated with harmful drug interactions. The activity of CYP3A4 is known to be modulated by several compounds, as well as by the electron transfer partner, cytochrome P450 reductase (CPR). The underlying mechanism of these effects however is poorly understood. We have used hydrogen-deuterium exchange mass spectroscopy (HDX-MS) to investigate the impact of CPR and three different substrates (7-benzyloxy-4-trifluoromethyl-coumarin, testosterone and progesterone) on the conformational dynamics of CYP3A4. Here, we report that interaction of CYP3A4 with substrates or with the oxidized or reduced form of CPR leads to a global rigidification of the CYP3A4 structure. This was evident from a suppression of deuterium exchange in several regions of CYP3A4, including those known to be involved in protein-protein interactions (C-helix) as well as substrate binding and specificity (B’-, E-helices and K/β1-loop). Furthermore, the bimodal isotopic distributions observed for some CYP3A4-derived peptides were drastically impacted by CPR and/or substrates, suggesting the existence of stable CYP3A4 conformational populations that are perturbed by ligand/CPR binding. The results have implications for understanding the mechanisms of allostery, ligand binding, and catalysis in CYP enzymes.


Sign in / Sign up

Export Citation Format

Share Document