Identification of candidate genes involved in the reversal of malignant phenotype of osteosarcoma cells transfected with the liver/bone/kidney alkaline phosphatase gene

Bone ◽  
2004 ◽  
Vol 34 (4) ◽  
pp. 672-679 ◽  
Author(s):  
Cinzia Zucchini ◽  
Michele Bianchini ◽  
Luisa Valvassori ◽  
Stefania Perdichizzi ◽  
Stefania Benini ◽  
...  
Bone ◽  
2000 ◽  
Vol 26 (3) ◽  
pp. 215-220 ◽  
Author(s):  
M.C Manara ◽  
N Baldini ◽  
M Serra ◽  
P.-L Lollini ◽  
C De Giovanni ◽  
...  

1979 ◽  
Vol 181 (1) ◽  
pp. 137-142 ◽  
Author(s):  
M N Woodroofe ◽  
P J Butterworth

The arginine-specific reagents 2,3-butanedione and phenylglyoxal inactivate pig kidney alkaline phosphatase. As inactivation proceeds there is a progressive fall in Vmax. of the enzyme, but no demonstrable change in the Km value for substrate. Pi, a competitive inhibitor, and AMP, a substrate of the enzyme, protect alkaline phosphatase against the arginine-specific reagents. These effects are explicable by the assumption that the enzyme contains an essential arginine residue at the active site. Protection is also afforded by the uncompetitive inhibitor NADH through a partially competive action against the reagents. Enzyme that has been exposed to the reagents has a decreased sensitivity to NADH inhibition. It is suggested that an arginine residue is important for NADH binding also, although this residue is distinct from that at the catalytic site. The protection given by NADH against loss of activity is indicative of the close proximity of the active and NADH sites.


1990 ◽  
Vol 68 (9) ◽  
pp. 1112-1118 ◽  
Author(s):  
Lee Kihn ◽  
Dorothy Rutkowski ◽  
Robert A. Stinson

As assessed by incorporation into liposomes and by adsorption to octyl-Sepharose, the integrity of the membrane anchor for the purified tetrameric forms of alkaline phosphatase from human liver and placenta was intact. Any treatment that resulted in a dimeric enzyme precluded incorporation and adsorption. An intact anchor also allowed incorporation into red cell ghosts. The addition of hydrophobic proteins inhibited incorporation into liposomes to varying degrees. Alkaline phosphatase was 100% releasable from liposomes and red cell ghosts by a phospholipase C specific for phosphatidylinositol. There was no appreciable difference in the rates of release of placental and liver alkaline phosphatases, although both were approximately 250 × slower in liposomes and 100 × slower in red cell ghosts than the enzyme's release from a suspension of cultured osteosarcoma cells. Both enzymes were released by phosphatidylinositol phospholipase C as dimers and would not reincorporate or adsorb to octyl-Sepharose. However, the enzyme incorporated, resolubilized by Triton X-100, and cleansed of the detergent by butanol treatment was tetrameric by gradient gel electrophoresis, was hydrophobic, and could reincorporate into fresh liposomes. A monoclonal antibody to liver alkaline phosphatase inhibited the enzyme's incorporation into liposomes, and abolished its release from liposomes and its conversion to dimers by phosphatidylinositol phospholipase C.Key words: alkaline phosphatase, liposome, phosphatidylinositol, membrane anchor.


1993 ◽  
Vol 39 (9) ◽  
pp. 1878-1884 ◽  
Author(s):  
J R Farley ◽  
S L Hall ◽  
S Herring ◽  
C Libanati ◽  
J E Wergedal

Abstract Putative standards of skeletal alkaline phosphatase (ALP) (from bone, bone cells, osteosarcoma cells, and Pagetic serum) and hepatic ALP (from cholestatic serum and bile) were used to compare three methods for quantifying skeletal ALP activity in serum: heat inactivation, precipitation with wheat germ agglutinin (WGA), and precipitation with concanavalin A (Con A). All the skeletal ALP standards were similarly sensitive to heat inactivation, as were the hepatic ALP standards. Heat inactivation separated skeletal from hepatic ALP by a 50% difference in remaining ALP activities (e.g., 23% and 74% remaining skeletal and hepatic ALP activities after 30 min at 52 degrees C). Differential precipitations with WGA and with Con A were less efficient at separating skeletal from hepatic ALP (maximum differences of < 30% remaining ALP activity). Although both types of hepatic ALP standard (cholestatic serum and bile) were precipitated with similar efficiencies by WGA and Con A, the skeletal ALP standards were not (e.g., at 2.7 g/L, WGA precipitated 78-86% of the ALP activity in Pagetic serum, but only 49% of the ALP activity in extracts of human bone). These data suggest that heat inactivation is preferable to precipitation with WGA or Con A for quantifying skeletal ALP activity in serum: it better separates skeletal from hepatic ALP activity and is not sensitive to glycosyl heterogeneity.


2016 ◽  
Vol 37 (2) ◽  
pp. 1107-1113 ◽  
Author(s):  
Dong Ning Liu ◽  
Yun Fei Zhou ◽  
Ai Fen Peng ◽  
Xin Hua Long ◽  
Xuan Yin Chen ◽  
...  

1975 ◽  
Vol 30 (11-12) ◽  
pp. 829-831 ◽  
Author(s):  
Jan Ahlers

Abstract Inactivation studies with 17 group-specific inhibitors showed that amino, hystidyl and tyrosyl residues probably are components of the active and/or regulatory sites of pig kidney alkaline phosphatase.


Sign in / Sign up

Export Citation Format

Share Document