scholarly journals Determination of the Pseudo-Atomic Structure of Nuclear Pore Complex (NPC) Components by Small Angle X-Ray Scattering (SAXS) and Computational Modeling

2010 ◽  
Vol 98 (3) ◽  
pp. 461a
Author(s):  
Seung Joong Kim ◽  
Jeremy Phillips ◽  
Anne Martel ◽  
Dina Schneidman ◽  
Michael Sauder ◽  
...  
2018 ◽  
Author(s):  
Jorick Maes ◽  
Nicolo Castro ◽  
Kim De Nolf ◽  
Willem Walravens ◽  
Benjamin Abécassis ◽  
...  

<div> <div> <div> <p>The accurate determination of the dimensions of a nano-object is paramount to the de- velopment of nanoscience and technology. Here, we provide procedures for sizing quasi- spherical colloidal nanocrystals (NCs) by means of small-angle x-ray scattering (SAXS). Using PbS NCs as a model system, the protocols outline the extraction of the net NC SAXS pattern by background correction and address the calibration of scattered x-ray intensity to an absolute scale. Different data analysis methods are compared, and we show that they yield nearly identical estimates of the NC diameter in the case of a NC ensemble with a monodisperse and monomodal size distribution. Extending the analysis to PbSe, CdSe </p> </div> </div> <div> <div> <p>and CdS NCs, we provide SAXS calibrated sizing curves, which relate the NC diameter and the NC band-gap energy as determined using absorbance spectroscopy. In compari- son with sizing curves calibrated by means of transmission electron microscopy (TEM), we systematically find that SAXS calibration assigns a larger diameter than TEM calibration to NCs with a given band gap. We attribute this difference to the difficulty of accurately sizing small objects in TEM images. To close, we demonstrate that NC concentrations can be directly extracted from SAXS patterns normalized to an absolute scale, and we show that SAXS-based concentrations agree with concentration estimates based on absorption spectroscopy.</p></div></div></div>


2020 ◽  
Author(s):  
Tyler Mrozowich ◽  
Amy Henrickson ◽  
Borries Demeler ◽  
Trushar R Patel

AbstractViral infections are responsible for numerous deaths worldwide. Flaviviruses, which contain RNA as their genetic material, are one of the most pathogenic families of viruses. There is an increasing amount of evidence suggesting that their 5’ and 3’ non-coding terminal regions are critical for their survival. In this study, the 5’ and 3’ terminal regions of Murray Valley Encephalitis and Powassan virus were examined using biophysical and computational modeling methods. First, the purity of in-vitro transcribed RNAs were investigated using size exclusion chromatography and analytical ultracentrifuge methods. Next, we employed small-angle X-ray scattering techniques to study solution conformation and low-resolution structures of these RNAs, which suggested that the 3’ terminal regions are highly extended, compared to the 5’ terminal regions for both viruses. Using computational modeling tools, we reconstructed 3-dimensional structures of each RNA fragment and compared them with derived small-angle X-ray scattering low-resolution structures. This approach allowed us to further reinforce that the 5’ terminal regions adopt more dynamic structures compared to the mainly double-stranded structures of the 3’ terminal regions.


2012 ◽  
Vol 7 (4) ◽  
pp. 107-116
Author(s):  
Sergey Bardakhanov ◽  
Ludmila Vikulina ◽  
Vladimir Lysenko ◽  
Andrey Nomoev ◽  
Sergey Poluyanov ◽  
...  

The possibility of application of small-angle X-ray scattering (SAXS) for nanopowders analysis was studied. The research for eight silica powders (including four powders obtained by the authors with help of electron accelerator) was conducted. The possibility of application of small angle X-ray scattering for determination of size distribution function of nanoparticles was shown


1992 ◽  
Vol 36 ◽  
pp. 355-372
Author(s):  
George D. Wignall

Scattering technigues have been employed since the beginnings of polymer science to provide information on the spatial arrangements of macromolecules. The first measurements were made in the 1920s and were concerned primarily with the determination of crystal structures via the Bragg lawnλ = 2dsinθ.


2012 ◽  
Vol 31 (2) ◽  
pp. 135-140 ◽  
Author(s):  
Trushar R. Patel ◽  
Raphael Reuten ◽  
Shawn Xiong ◽  
Markus Meier ◽  
Donald J. Winzor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document