scholarly journals Trapping On-Pathway Intermediates for Large Scale Conformational Changes with Coarse-Grained Simulations

2017 ◽  
Vol 112 (3) ◽  
pp. 485a
Author(s):  
Laura Orellana ◽  
Özge Yoluk ◽  
Oliver Carrillo ◽  
Modesto Orozco ◽  
Erik Lindahl
2019 ◽  
Vol 491 (2) ◽  
pp. 1600-1621
Author(s):  
Yi Mao ◽  
Jun Koda ◽  
Paul R Shapiro ◽  
Ilian T Iliev ◽  
Garrelt Mellema ◽  
...  

ABSTRACT Cosmic reionization was driven by the imbalance between early sources and sinks of ionizing radiation, both of which were dominated by small-scale structure and are thus usually treated in cosmological reionization simulations by subgrid modelling. The recombination rate of intergalactic hydrogen is customarily boosted by a subgrid clumping factor, 〈n2〉/〈n〉2, which corrects for unresolved fluctuations in gas density n on scales below the grid-spacing of coarse-grained simulations. We investigate in detail the impact of this inhomogeneous subgrid clumping on reionization and its observables, as follows: (1) Previous attempts generally underestimated the clumping factor because of insufficient mass resolution. We perform a high-resolution N-body simulation that resolves haloes down to the pre-reionization Jeans mass to derive the time-dependent, spatially varying local clumping factor and a fitting formula for its correlation with local overdensity. (2) We then perform a large-scale N-body and radiative transfer simulation that accounts for this inhomogeneous subgrid clumping by applying this clumping factor-overdensity correlation. Boosting recombination significantly slows the expansion of ionized regions, which delays completion of reionization and suppresses 21 cm power spectra on large scales in the later stages of reionization. (3) We also consider a simplified prescription in which the globally averaged, time-evolving clumping factor from the same high-resolution N-body simulation is applied uniformly to all cells in the reionization simulation, instead. Observables computed with this model agree fairly well with those from the inhomogeneous clumping model, e.g. predicting 21 cm power spectra to within 20 per cent error, suggesting it may be a useful approximation.


2021 ◽  
Author(s):  
Christin Fuks ◽  
Sebastian Falkner ◽  
Nadine Schwierz ◽  
Martin Hengesbach

ABSTRACTRiboswitch RNAs regulate gene expression by conformational changes induced by environmental conditions and specific ligand binding. The guanidine-II riboswitch is proposed to bind the small molecule guanidinium and to subsequently form a kissing loop interaction between the P1 and P2 hairpins. While an interaction was shown for isolated hairpins in crystallization and EPR experiments, an intrastrand kissing loop formation has not been demonstrated. Here, we report the first evidence of this interaction in cis in a ligand and Mg2+ dependent manner. Using single-molecule FRET spectroscopy and detailed structural information from coarse-grained simulations, we observe and characterize three interconvertible states representing an open and kissing loop conformation as well as a novel Mg2+ dependent state for the guanidine-II riboswitch from E. coli. The results further substantiate the proposed switching mechanism and provide detailed insight into the regulation mechanism for the guanidine-II riboswitch class. Combining single molecule experiments and coarse-grained simulations therefore provides a promising perspective in resolving the conformational changes induced by environmental conditions and to yield molecular insights into RNA regulation.


Sign in / Sign up

Export Citation Format

Share Document