scholarly journals The Therapeutic Implications of Protein Kinase C Inhibition in Endothelial Dysfunction Induced by Cardioplegic-Ischemia/Reperfusion Injury

2019 ◽  
Vol 116 (3) ◽  
pp. 131a
Author(s):  
Justin Kim ◽  
Guangbin Shi ◽  
Amy Zhao ◽  
Frank Sellke ◽  
Jun Feng
1996 ◽  
Vol 271 (3) ◽  
pp. R718-R726 ◽  
Author(s):  
D. R. Meldrum ◽  
J. C. Cleveland ◽  
M. B. Mitchell ◽  
B. C. Sheridan ◽  
F. Gamboni-Robertson ◽  
...  

Although protein kinase C (PKC)-mediated cardioadaptation to ischemia-reperfusion (IR) is accompanied by increased intracellular Ca2+ concentration, it is unknown whether a preischemia sarcoplasmic reticulum (SR) Ca2+ release affects PKC-mediated post-IR functional protection. To study this, crystalloid-perfused (Langendorff) Sprague-Dawley rat hearts were used to assess the effects of a ryanodine (Ry)-induced preischemia Ca2+ load (Ry, 5 nM/2 min, retrograde coronary) 10 min before global IR (20 min). Ry was administered with and without each of two different PKC inhibitors (20 microM chelerythrine and 150 nM bisindolylmaleimide I-HCl). Ry improved myocardial functional recovery (developed pressure, end-diastolic pressure, coronary flow, and creatine kinase activity), which was eliminated after PKC inhibition. Immunohistochemical staining for PKC isoforms demonstrated that Ry induces specific PKC translocation of alpha-, delta-, and zeta-isoforms. We conclude that 1) a preischemia Ca2+ load from the SR results in post-IR myocardial functional protection 2) Ca(2+)-induced functional protection is PKC regulated via the translocation of specific isoforms, and 3) Ca(2+)-induced cardioadaptation to IR injury may have important therapeutic implications prior to planned ischemic events such as cardiac allograft preservation and cardiac bypass surgery.


Circulation ◽  
2020 ◽  
Vol 142 (11) ◽  
pp. 1077-1091
Author(s):  
Dan Shan ◽  
Sile Guo ◽  
Hong-Kun Wu ◽  
Fengxiang Lv ◽  
Li Jin ◽  
...  

Background: Ischemic heart disease is the leading cause of morbidity and mortality worldwide. Ischemic preconditioning (IPC) is the most powerful intrinsic protection against cardiac ischemia/reperfusion injury. Previous studies have shown that a multifunctional TRIM family protein, MG53 (mitsugumin 53; also called TRIM72), not only plays an essential role in IPC-mediated cardioprotection against ischemia/reperfusion injury but also ameliorates mechanical damage. In addition to its intracellular actions, as a myokine/cardiokine, MG53 can be secreted from the heart and skeletal muscle in response to metabolic stress. However, it is unknown whether IPC-mediated cardioprotection is causally related to MG53 secretion and, if so, what the underlying mechanism is. Methods: Using proteomic analysis in conjunction with genetic and pharmacological approaches, we examined MG53 secretion in response to IPC and explored the underlying mechanism using rodents in in vivo, isolated perfused hearts, and cultured neonatal rat ventricular cardiomyocytes. Moreover, using recombinant MG53 proteins, we investigated the potential biological function of secreted MG53 in the context of IPC and ischemia/reperfusion injury. Results: We found that IPC triggered robust MG53 secretion in rodents in vivo, perfused hearts, and cultured cardiac myocytes without causing cell membrane leakage. Mechanistically, IPC promoted MG53 secretion through H 2 O 2 -evoked activation of protein kinase-C-δ. Specifically, IPC-induced myocardial MG53 secretion was mediated by H 2 O 2 -triggered phosphorylation of protein kinase-C-δ at Y311, which is necessary and sufficient to facilitate MG53 secretion. Functionally, systemic delivery of recombinant MG53 proteins to mimic elevated circulating MG53 not only restored IPC function in MG53-deficient mice but also protected rodent hearts from ischemia/reperfusion injury even in the absence of IPC. Moreover, oxidative stress by H 2 O 2 augmented MG53 secretion, and MG53 knockdown exacerbated H 2 O 2 -induced cell injury in human embryonic stem cell–derived cardiomyocytes, despite relatively low basal expression of MG53 in human heart. Conclusions: We conclude that IPC and oxidative stress can trigger MG53 secretion from the heart via an H 2 O 2 –protein kinase-C-δ–dependent mechanism and that extracellular MG53 can participate in IPC protection against cardiac ischemia/reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document