scholarly journals Probing Interactions of Therapeutic Antibodies with Serum via Second Virial Coefficient Measurements

Author(s):  
Hayli A. Larsen ◽  
William M. Atkins ◽  
Abhinav Nath
2021 ◽  
Author(s):  
Hayli A Larsen ◽  
William M Atkins ◽  
Abhinav Nath

Antibody-based therapeutics are the fastest growing drug class on the market, used to treat aggressive forms of cancer, chronic autoimmune conditions, and numerous other disease states. While the specificity, affinity, and versatility of therapeutic antibodies can provide an advantage over traditional small molecule drugs, their development and optimization can be much more challenging and time-consuming. This is, in part, because the ideal formulation buffer systems used for in vitro characterization inadequately reflect the crowded biological environments (serum, endosomal lumen, etc.) that these drugs experience once administered to a patient. Such environments can perturb the binding of antibodies to their antigens and receptors, as well as homo- and hetero-aggregation, in ways that are incompletely understood, thereby altering therapeutic effect and disposition. While excluded volume effects are classically thought to favor binding, weak interactions with co-solutes in crowded conditions can inhibit binding. The second virial coefficient (B2) parameter quantifies such weak interactions and can be determined by a variety of techniques in dilute solution, but analogous methods in complex biological fluids are not well established. Here, we demonstrate that fluorescence correlation spectroscopy (FCS) is able to measure diffusive B2 values directly in undiluted serum. Apparent second virial coefficient (B2,app) measurements of antibodies in serum reveal that changes in the balance between attractive and repulsive interactions can dramatically impact global nonideality. Furthermore, our findings suggest that the common approach of isolating specific components and completing independent cross-term virial coefficient measurements is an incomplete representation of nonideality in serum. The approach presented here could enrich our understanding of the effects of biological environments on proteins in general, and advance the development of therapeutic antibodies and other protein-based therapeutics.


1995 ◽  
Vol 60 (10) ◽  
pp. 1641-1652 ◽  
Author(s):  
Henri C. Benoît ◽  
Claude Strazielle

It has been shown that in light scattering experiments with polymers replacement of a solvent by a solvent mixture causes problems due to preferential adsorption of one of the solvents. The present paper extends this theory to be applicable to any angle of observation and any concentration by using the random phase approximation theory proposed by de Gennes. The corresponding formulas provide expressions for molecular weight, gyration radius, and the second virial coefficient, which enables measurements of these quantities provided enough information on molecular and thermodynamic quantities is available.


1991 ◽  
Vol 44 (19) ◽  
pp. 10731-10735 ◽  
Author(s):  
Akira Suzuki ◽  
M. K. Srivastava ◽  
R. K. Bhaduri ◽  
J. Law

1961 ◽  
Vol 39 (11) ◽  
pp. 1563-1572 ◽  
Author(s):  
J. Van Kranendonk

A simple derivation is given of the quantum mechanical expression for the second virial coefficient in terms of the scattering phase shifts. The derivation does not require the introduction of a quantization volume and is based on the identity R(z)−R0(z) = R0(z)H1R(z), where R0(z) and R(z) are the resolvent operators corresponding to the unperturbed and total Hamiltonians H0 and H0 + H1 respectively. The derivation is valid in particular for a gas of excitons in a crystal for which the shape of the waves describing the relative motion of two excitons is not spherical, and, in general, varies with varying energy. The validity of the phase shift formula is demonstrated explicitly for this case by considering a quantization volume with a boundary the shape of which varies with the energy in such a way that for each energy the boundary is a surface of constant phase. The density of states prescribed by the phase shift formula is shown to result if the enclosed volume is required to be the same for all energies.


2018 ◽  
Vol 73 (2) ◽  
pp. 121-125
Author(s):  
Bahtiyar A. Mamedov ◽  
Elif Somuncu ◽  
Iskender M. Askerov

AbstractWe present a new analytical approximation for determining the compressibility factor of real gases at various temperature values. This algorithm is suitable for the accurate evaluation of the compressibility factor using the second virial coefficient with a Lennard–Jones (12-6) potential. Numerical examples are presented for the gases H2, N2, He, CO2, CH4 and air, and the results are compared with other studies in the literature. Our results showed good agreement with the data in the literature. The consistency of the results demonstrates the effectiveness of our analytical approximation for real gases.


1969 ◽  
Vol 50 (9) ◽  
pp. 4034-4055 ◽  
Author(s):  
M. E. Boyd ◽  
S. Y. Larsen ◽  
J. E. Kilpatrick

Sign in / Sign up

Export Citation Format

Share Document