Perinatal development of the mammillothalamic tract and innervation of the anterior thalamic nuclei

2009 ◽  
Vol 1248 ◽  
pp. 1-13 ◽  
Author(s):  
E.V. Alpeeva ◽  
I.G. Makarenko
2021 ◽  
Author(s):  
S. C. Barnett ◽  
L.C. Parr-Brownlie ◽  
B. A. L. Perry ◽  
C. K. Young ◽  
H. E. Wicky ◽  
...  

AbstractA hippocampal-diencephalic-cortical network supports memory function. The anterior thalamic nuclei (ATN) form a key anatomical hub within this system. Consistent with this, injury to the mammillary body-ATN axis is associated with examples of clinical amnesia. However, there is only limited and indirect support that the output of ATN neurons actively enhances memory. Here, in rats, we first showed that mammillothalamic tract (MTT) lesions caused a persistent impairment in spatial working memory. MTT lesions also reduced rhythmic electrical activity across the memory system. Next, we introduced 8.5 Hz optogenetic theta-burst stimulation of the ATN glutamatergic neurons. The exogenously-triggered, regular pattern of stimulation produced an acute and substantial improvement of spatial working memory in rats with MTT lesions and enhanced rhythmic electrical activity. Neither behaviour nor rhythmic activity was affected by endogenous stimulation derived from the dorsal hippocampus. Analysis of immediate early gene activity, after the rats foraged for food in an open field, showed that exogenously-triggered ATN stimulation also increased Zif268 expression across memory-related structures. These findings provide clear evidence that increased ATN neuronal activity supports memory. They suggest that ATN-focused gene therapy may be feasible to counter clinical amnesia associated with dysfunction in the mammillary body-ATN axis.HighlightsThe mammillothalamic tract (MTT) supports neural activity in an extended memory system.Optogenetic activation of neurons in the anterior thalamus acutely improves memory after MTT lesions.Rescued memory associates with system-wide neuronal activation and enhanced EEG.Anterior thalamus actively sustains memory and is a feasible therapeutic target.Abstract FigureOptostimulation of anterior thalamus restores memory function after MTT lesionsCreated with BioRender.com


Hippocampus ◽  
2017 ◽  
Vol 28 (2) ◽  
pp. 121-135 ◽  
Author(s):  
Brook A. L. Perry ◽  
Stephanie A. Mercer ◽  
Sophie C. Barnett ◽  
Jungah Lee ◽  
John C. Dalrymple-Alford

2017 ◽  
Vol 1 ◽  
pp. 239821281772344 ◽  
Author(s):  
Emma J. Bubb ◽  
Lisa Kinnavane ◽  
John P. Aggleton

This review brings together current knowledge from tract tracing studies to update and reconsider those limbic connections initially highlighted by Papez for their presumed role in emotion. These connections link hippocampal and parahippocampal regions with the mammillary bodies, the anterior thalamic nuclei, and the cingulate gyrus, all structures now strongly implicated in memory functions. An additional goal of this review is to describe the routes taken by the various connections within this network. The original descriptions of these limbic connections saw their interconnecting pathways forming a serial circuit that began and finished in the hippocampal formation. It is now clear that with the exception of the mammillary bodies, these various sites are multiply interconnected with each other, including many reciprocal connections. In addition, these same connections are topographically organised, creating further subsystems. This complex pattern of connectivity helps explain the difficulty of interpreting the functional outcome of damage to any individual site within the network. For these same reasons, Papez’s initial concept of a loop beginning and ending in the hippocampal formation needs to be seen as a much more complex system of hippocampal–diencephalic–cingulate connections. The functions of these multiple interactions might be better viewed as principally providing efferent information from the posterior medial temporal lobe. Both a subcortical diencephalic route (via the fornix) and a cortical cingulate route (via retrosplenial cortex) can be distinguished. These routes provide indirect pathways for hippocampal interactions with prefrontal cortex, with the preponderance of both sets of connections arising from the more posterior hippocampal regions. These multi-stage connections complement the direct hippocampal projections to prefrontal cortex, which principally arise from the anterior hippocampus, thereby creating longitudinal functional differences along the anterior–posterior plane of the hippocampus.


Sign in / Sign up

Export Citation Format

Share Document