Inotropic support against early brain injury improves cerebral hypoperfusion and outcomes in a murine model of subarachnoid hemorrhage

2017 ◽  
Vol 130 ◽  
pp. 18-26 ◽  
Author(s):  
Tomoko Mutoh ◽  
Tatsushi Mutoh ◽  
Kazuhiro Nakamura ◽  
Kazumasu Sasaki ◽  
Yasuko Tatewaki ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammed Sabri ◽  
Elliot Lass ◽  
R. Loch Macdonald

Early brain injury (EBI) has become an area of extreme interest in the recent years and seems to be a common denominator in the pathophysiology of global transient ischemia and subarachnoid hemorrhage (SAH). In this paper, we highlight the importance of cerebral hypoperfusion and other mechanisms that occur in tandem in both pathologies and underline their possible roles in triggering brain injury after hemorrhagic or ischemic strokes.


2019 ◽  
pp. 1-11 ◽  
Author(s):  
Kosuke Kumagai ◽  
Arata Tomiyama ◽  
Satoru Takeuchi ◽  
Naoki Otani ◽  
Masanori Fujita ◽  
...  

OBJECTIVEDelayed brain injury (DBI) is considered one of the most important causes of mortality and morbidity after subarachnoid hemorrhage (SAH). However, no suitable experimental rat endovascular perforation (EVP) SAH model was available for investigating DBI. The authors added early cerebral hypoperfusion to a mild EVP SAH model by unilateral common carotid artery occlusion (UCCAO) 24 hours after induction of SAH to mimic the clinical course of early cerebral hypoperfusion after SAH.METHODSA total of 109 adult male Sprague-Dawley rats were randomly divided into 2 groups: no SAH and SAH. Next, no-SAH rats were randomly divided on day 1 into 2 groups: sham and UCCAO. SAH rats with a neurological score of 15 or greater were randomly divided into 2 groups: SAH − UCCAO and SAH + UCCAO group.RESULTSThe mild SAH model had a lower mortality rate of 5.4% within the first 24 hours. No rat died in the SAH + UCCAO group until day 7. DBI as well as early brain injury (EBI), reactive astrogliosis, and cerebral vasospasm significantly worsened in the SAH + UCCAO group.CONCLUSIONSThe present SAH + UCCAO model can simulate EBI with aggravation of reactive astrogliosis, cerebral vasospasm, and DBI but without high mortality.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Zhou ◽  
Tao Tao ◽  
Guangjie Liu ◽  
Xuan Gao ◽  
Yongyue Gao ◽  
...  

AbstractNeuronal apoptosis has an important role in early brain injury (EBI) following subarachnoid hemorrhage (SAH). TRAF3 was reported as a promising therapeutic target for stroke management, which covered several neuronal apoptosis signaling cascades. Hence, the present study is aimed to determine whether downregulation of TRAF3 could be neuroprotective in SAH-induced EBI. An in vivo SAH model in mice was established by endovascular perforation. Meanwhile, primary cultured cortical neurons of mice treated with oxygen hemoglobin were applied to mimic SAH in vitro. Our results demonstrated that TRAF3 protein expression increased and expressed in neurons both in vivo and in vitro SAH models. TRAF3 siRNA reversed neuronal loss and improved neurological deficits in SAH mice, and reduced cell death in SAH primary neurons. Mechanistically, we found that TRAF3 directly binds to TAK1 and potentiates phosphorylation and activation of TAK1, which further enhances the activation of NF-κB and MAPKs pathways to induce neuronal apoptosis. Importantly, TRAF3 expression was elevated following SAH in human brain tissue and was mainly expressed in neurons. Taken together, our study demonstrates that TRAF3 is an upstream regulator of MAPKs and NF-κB pathways in SAH-induced EBI via its interaction with and activation of TAK1. Furthermore, the TRAF3 may serve as a novel therapeutic target in SAH-induced EBI.


2021 ◽  
Author(s):  
Hideki Kanamaru ◽  
Fumihiro Kawakita ◽  
Hirofumi Nishikawa ◽  
Fumi Nakano ◽  
Reona Asada ◽  
...  

2015 ◽  
Vol 12 (1) ◽  
pp. 967-973 ◽  
Author(s):  
BINGJIE ZHENG ◽  
HUAILEI LIU ◽  
RUKE WANG ◽  
SHANCAI XU ◽  
YAOHUA LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document