human brain tissue
Recently Published Documents


TOTAL DOCUMENTS

609
(FIVE YEARS 196)

H-INDEX

59
(FIVE YEARS 9)

Author(s):  
Sowmya N. Sundaresh ◽  
John D. Finan ◽  
Benjamin S. Elkin ◽  
Andrew V. Basilio ◽  
Guy M. McKhann ◽  
...  

2022 ◽  
Author(s):  
Anthony Fernandez-Castaneda ◽  
Peiwen Lu ◽  
Anna C Geraghty ◽  
Eric Song ◽  
Myoung-Hwa Lee ◽  
...  

Survivors of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection frequently experience lingering neurological symptoms, including impairment in attention, concentration, speed of information processing and memory. This long-COVID cognitive syndrome shares many features with the syndrome of cancer therapy-related cognitive impairment (CRCI). Neuroinflammation, particularly microglial reactivity and consequent dysregulation of hippocampal neurogenesis and oligodendrocyte lineage cells, is central to CRCI. We hypothesized that similar cellular mechanisms may contribute to the persistent neurological symptoms associated with even mild SARS-CoV-2 respiratory infection. Here, we explored neuroinflammation caused by mild respiratory SARS-CoV-2 infection, without neuroinvasion, and effects on hippocampal neurogenesis and the oligodendroglial lineage. Using a mouse model of mild respiratory SARS-CoV-2 infection induced by intranasal SARS-CoV-2 delivery, we found white matter-selective microglial reactivity, a pattern observed in CRCI. Human brain tissue from 9 individuals with COVID-19 or SARS-CoV-2 infection exhibits the same pattern of prominent white matter-selective microglial reactivity. In mice, pro-inflammatory CSF cytokines/chemokines were elevated for at least 7-weeks post-infection; among the chemokines demonstrating persistent elevation is CCL11, which is associated with impairments in neurogenesis and cognitive function. Humans experiencing long-COVID with cognitive symptoms (48 subjects) similarly demonstrate elevated CCL11 levels compared to those with long-COVID who lack cognitive symptoms (15 subjects). Impaired hippocampal neurogenesis, decreased oligodendrocytes and myelin loss in subcortical white matter were evident at 1 week, and persisted until at least 7 weeks, following mild respiratory SARS-CoV-2 infection in mice. Taken together, the findings presented here illustrate striking similarities between neuropathophysiology after cancer therapy and after SARS-CoV-2 infection, and elucidate cellular deficits that may contribute to lasting neurological symptoms following even mild SARS-CoV-2 infection.


2022 ◽  
Vol 45 (1) ◽  
Author(s):  
Madeline G. Andrews ◽  
Arnold R. Kriegstein

Organoids are 3D cell culture systems derived from human pluripotent stem cells that contain tissue resident cell types and reflect features of early tissue organization. Neural organoids are a particularly innovative scientific advance given the lack of accessibility of developing human brain tissue and intractability of neurological diseases. Neural organoids have become an invaluable approach to model features of human brain development that are not well reflected in animal models. Organoids also hold promise for the study of atypical cellular, molecular, and genetic features that underscore neurological diseases. Additionally, organoids may provide a platform for testing therapeutics in human cells and are a potential source for cell replacement approaches to brain injury or disease. Despite the promising features of organoids, their broad utility is hampered by a variety of limitations, including lack of high-fidelity cell types, limited maturation, atypical physiology, and lack of arealization, features that may limit their reliability for certain applications. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2022 ◽  
Author(s):  
Nakul Ravi Raval ◽  
Arafat Nasser ◽  
Clara Aabye Madsen ◽  
Natalie Beschorner ◽  
Emily Eufaula Beaman ◽  
...  

Positron emission tomography (PET) has become an essential clinical tool for diagnosing neurodegenerative diseases with abnormal accumulation of proteins like amyloid-β or tau. Despite many attempts, it has not been possible to develop an appropriate radioligand for imaging aggregated α-synuclein, which is seen in, e.g., Parkinson's Disease. Access to a large animal model with α-synuclein pathology would critically enable a more translationally appropriate evaluation of novel radioligands. We here established a pig model with cerebral injections of α-synuclein preformed fibrils or brain homogenate from postmortem human brain tissue from individuals with Alzheimer's disease (AD) or dementia with Lewy body (DLB) into the pig's brain using minimally invasive surgery and validated against saline injections. In the absence of a suitable α-synuclein radioligand, we validated the model with an unselective amyloid-β tracer [11C]PIB, which has a high affinity for β-sheet structures in aggregates. Gadolinium-enhanced MRI confirmed that the blood-brain barrier function was intact. A few hours post-injection, pigs were PET scanned with [11C]PIB. Quantification was done with Logan invasive graphical analysis and simplified reference tissue model 2 using the occipital cortex as a reference region. After the scan, we retrieved the brains to confirm successful injection using autoradiography and immunohistochemistry. We found four times higher [11C]PIB uptake in AD-homogenate-injected regions and two times higher uptake in α-synuclein-preformed-fibrils-injected regions compared to the saline-injected regions. The [11C]PIB uptake was the same in the occipital cortex, cerebellum, DLB-homogenate, and saline-injected regions. With its large brains and ability to undergo repeated PET scans as well as neurosurgical procedures, the pig provides a robust, cost-effective, and good translational model for assessment of novel radioligands including, but not limited to, proteinopathies.


2021 ◽  
Author(s):  
Benjamin Lochocki ◽  
Baayla D. C. Boon ◽  
Sander R. Verheul ◽  
Liron Zada ◽  
Jereon J. M. Hoozemans ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yiyi Ma ◽  
Eric B. Dammer ◽  
Daniel Felsky ◽  
Duc M. Duong ◽  
Hans-Ulrich Klein ◽  
...  

AbstractRNA editing is a feature of RNA maturation resulting in the formation of transcripts whose sequence differs from the genome template. Brain RNA editing may be altered in Alzheimer’s disease (AD). Here, we analyzed data from 1,865 brain samples covering 9 brain regions from 1,074 unrelated subjects on a transcriptome-wide scale to identify inter-regional differences in RNA editing. We expand the list of known brain editing events by identifying 58,761 previously unreported events. We note that only a small proportion of these editing events are found at the protein level in our proteome-wide validation effort. We also identified the occurrence of editing events associated with AD dementia, neuropathological measures and longitudinal cognitive decline in: SYT11, MCUR1, SOD2, ORAI2, HSDL2, PFKP, and GPRC5B. Thus, we present an extended reference set of brain RNA editing events, identify a subset that are found to be expressed at the protein level, and extend the narrative of transcriptomic perturbation in AD to RNA editing.


NeuroImage ◽  
2021 ◽  
pp. 118832
Author(s):  
Henriette Rusch ◽  
Malte Brammerloh ◽  
Jens Stieler ◽  
Mandy Sonntag ◽  
Siawoosh Mohammadi ◽  
...  

Author(s):  
So Jung Park ◽  
Rebecca A. Frake ◽  
Cansu Karabiyik ◽  
Sung Min Son ◽  
Farah H. Siddiqi ◽  
...  

AbstractAutophagic decline is considered a hallmark of ageing. The activity of this intracytoplasmic degradation pathway decreases with age in many tissues and autophagy induction ameliorates ageing in many organisms, including mice. Autophagy is a critical protective pathway in neurons and ageing is the primary risk factor for common neurodegenerative diseases. Here, we describe that autophagosome biogenesis declines with age in mouse brains and that this correlates with increased expression of the SORBS3 gene (encoding vinexin) in older mouse and human brain tissue. We characterise vinexin as a negative regulator of autophagy. SORBS3 knockdown increases F-actin structures, which compete with YAP/TAZ for binding to their negative regulators, angiomotins, in the cytosol. This promotes YAP/TAZ translocation into the nucleus, thereby increasing YAP/TAZ transcriptional activity and autophagy. Our data therefore suggest brain autophagy decreases with age in mammals and that this is likely, in part, mediated by increasing levels of vinexin.


Author(s):  
Michael Notaras ◽  
Aiman Lodhi ◽  
Friederike Dündar ◽  
Paul Collier ◽  
Nicole M. Sayles ◽  
...  

AbstractDue to an inability to ethically access developing human brain tissue as well as identify prospective cases, early-arising neurodevelopmental and cell-specific signatures of Schizophrenia (Scz) have remained unknown and thus undefined. To overcome these challenges, we utilized patient-derived induced pluripotent stem cells (iPSCs) to generate 3D cerebral organoids to model neuropathology of Scz during this critical period. We discovered that Scz organoids exhibited ventricular neuropathology resulting in altered progenitor survival and disrupted neurogenesis. This ultimately yielded fewer neurons within developing cortical fields of Scz organoids. Single-cell sequencing revealed that Scz progenitors were specifically depleted of neuronal programming factors leading to a remodeling of cell-lineages, altered differentiation trajectories, and distorted cortical cell-type diversity. While Scz organoids were similar in their macromolecular diversity to organoids generated from healthy controls (Ctrls), four GWAS factors (PTN, COMT, PLCL1, and PODXL) and peptide fragments belonging to the POU-domain transcription factor family (e.g., POU3F2/BRN2) were altered. This revealed that Scz organoids principally differed not in their proteomic diversity, but specifically in their total quantity of disease and neurodevelopmental factors at the molecular level. Single-cell sequencing subsequently identified cell-type specific alterations in neuronal programming factors as well as a developmental switch in neurotrophic growth factor expression, indicating that Scz neuropathology can be encoded on a cell-type-by-cell-type basis. Furthermore, single-cell sequencing also specifically replicated the depletion of BRN2 (POU3F2) and PTN in both Scz progenitors and neurons. Subsequently, in two mechanistic rescue experiments we identified that the transcription factor BRN2 and growth factor PTN operate as mechanistic substrates of neurogenesis and cellular survival, respectively, in Scz organoids. Collectively, our work suggests that multiple mechanisms of Scz exist in patient-derived organoids, and that these disparate mechanisms converge upon primordial brain developmental pathways such as neuronal differentiation, survival, and growth factor support, which may amalgamate to elevate intrinsic risk of Scz.


Sign in / Sign up

Export Citation Format

Share Document