scholarly journals Hydrogen-rich saline alleviates early brain injury via reducing oxidative stress and brain edema following experimental subarachnoid hemorrhage in rabbits

2012 ◽  
Vol 13 (1) ◽  
pp. 47 ◽  
Author(s):  
Zong Zhuang ◽  
Meng-liang Zhou ◽  
Wan-chun You ◽  
Lin Zhu ◽  
Chi-yuan Ma ◽  
...  
2014 ◽  
Vol 121 (1) ◽  
pp. 42-54 ◽  
Author(s):  
Xiang-Sheng Zhang ◽  
Xin Zhang ◽  
Meng-Liang Zhou ◽  
Xiao-Ming Zhou ◽  
Ning Li ◽  
...  

Object Aneurysmal subarachnoid hemorrhage (SAH) causes devastating rates of mortality and morbidity. Accumulating studies indicate that early brain injury (EBI) greatly contributes to poor outcomes after SAH and that oxidative stress plays an important role in the development of EBI following SAH. Astaxanthin (ATX), one of the most common carotenoids, has a powerful antioxidative property. However, the potential role of ATX in protecting against EBI after SAH remains obscure. The goal of this study was to assess whether ATX can attenuate SAH-induced brain edema, blood-brain barrier permeability, neural cell death, and neurological deficits, and to elucidate whether the mechanisms of ATX against EBI are related to its powerful antioxidant property. Methods Two experimental SAH models were established, including a prechiasmatic cistern SAH model in rats and a one-hemorrhage SAH model in rabbits. Both intracerebroventricular injection and oral administration of ATX were evaluated in this experiment. Posttreatment assessments included neurological scores, body weight loss, brain edema, Evans blue extravasation, Western blot analysis, histopathological study, and biochemical estimation. Results It was observed that an ATX intracerebroventricular injection 30 minutes post-SAH could significantly attenuate EBI (including brain edema, blood-brain barrier disruption, neural cell apoptosis, and neurological dysfunction) after SAH in rats. Meanwhile, delayed treatment with ATX 3 hours post-SAH by oral administration was also neuroprotective in both rats and rabbits. In addition, the authors found that ATX treatment could prevent oxidative damage and upregulate the endogenous antioxidant levels in the rat cerebral cortex following SAH. Conclusions These results suggest that ATX administration could alleviate EBI after SAH, potentially through its powerful antioxidant property. The authors conclude that ATX might be a promising therapeutic agent for EBI following SAH.


2019 ◽  
Vol 28 (8) ◽  
pp. 985-1001 ◽  
Author(s):  
Huangcheng Song ◽  
Shuai Yuan ◽  
Zhuwei Zhang ◽  
Juyi Zhang ◽  
Peng Zhang ◽  
...  

Sodium/hydrogen exchanger 1 (NHE1) plays an essential role in maintaining intracellular pH (pHi) homeostasis in the central nervous system (CNS) under physiological conditions, and it is also associated with neuronal death and intracellular Na+ and Ca2+ overload induced by cerebral ischemia. However, its roles and underlying mechanisms in early brain injury (EBI) induced by subarachnoid hemorrhage (SAH) have not been fully explored. In this research, a SAH model in adult male rat was established through injecting autologous arterial blood into prechiasmatic cistern. Meanwhile, primary cultured cortical neurons of rat treated with 5 μM oxygen hemoglobin (OxyHb) for 24 h were applied to mimic SAH in vitro. We find that the protein levels of NHE1 are significantly increased in brain tissues of rats after SAH. Downregulation of NHE1 by HOE642 (a specific chemical inhibitor of NHE1) and genetic-knockdown can effectively alleviate behavioral and cognitive dysfunction, brain edema, blood-brain barrier (BBB) injury, inflammatory reactions, oxidative stress, neurondegeneration, and neuronal apoptosis, all of which are involved in EBI following SAH. However, upregulation of NHE1 by genetic-overexpression can produce opposite effects. Additionally, inhibiting NHE1 significantly attenuates OxyHb-induced neuronal apoptosis in vitro and reduces interaction of NHE1 and CHP1 both in vivo and in vitro. Collectively, we can conclude that NHE1 participates in EBI induced by SAH through mediating inflammation, oxidative stress, behavioral and cognitive dysfunction, BBB injury, brain edema, and promoting neuronal degeneration and apoptosis.


2015 ◽  
Vol 12 (1) ◽  
pp. 967-973 ◽  
Author(s):  
BINGJIE ZHENG ◽  
HUAILEI LIU ◽  
RUKE WANG ◽  
SHANCAI XU ◽  
YAOHUA LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document