Environmental enrichment enhances post-ischemic cerebral blood flow and functional hyperemia in the ipsilesional somatosensory cortex

2020 ◽  
Vol 160 ◽  
pp. 91-97
Author(s):  
Hongyu Xie ◽  
Qun Zhang ◽  
Naiyun Zhou ◽  
Ce Li ◽  
Kewei Yu ◽  
...  
Hypertension ◽  
2015 ◽  
Vol 65 (3) ◽  
pp. 636-643 ◽  
Author(s):  
Julian M. Stewart ◽  
Andrew T. Del Pozzi ◽  
Akash Pandey ◽  
Zachary R. Messer ◽  
Courtney Terilli ◽  
...  

2015 ◽  
Vol 35 (6) ◽  
pp. 883-887 ◽  
Author(s):  
Francisco Fernandez-Klett ◽  
Josef Priller

Pericytes are mural cells with contractile properties. Here, we provide evidence that microvascular pericytes modulate cerebral blood flow in response to neuronal activity (‘functional hyperemia’). Besides their role in neurovascular coupling, pericytes are responsive to brain damage. Cerebral ischemia is associated with constrictions and death of capillary pericytes, followed by fibrotic reorganization of the ischemic tissue. The data suggest that precapillary arterioles and capillaries are major sites of hemodynamic regulation in the brain.


2014 ◽  
Vol 25 (9) ◽  
pp. 2594-2609 ◽  
Author(s):  
Sanne Barsballe Jessen ◽  
Alexey Brazhe ◽  
Barbara Lykke Lind ◽  
Claus Mathiesen ◽  
Kirsten Thomsen ◽  
...  

2012 ◽  
Vol 112 (1) ◽  
pp. 197-203 ◽  
Author(s):  
Takeshi Nishijima ◽  
Masahiro Okamoto ◽  
Takashi Matsui ◽  
Ichiro Kita ◽  
Hideaki Soya

Current studies have demonstrated that exercise increases regional cerebral blood flow (rCBF), an index of neuronal activity. However, neuronal regulation of the increased rCBF in the brain parenchyma is poorly understood. We developed a running model with rats for monitoring hippocampal cerebral blood flow (Hip-CBF) and found that mild treadmill running increases Hip-CBF in a tetrodotoxin-dependent manner, suggesting that functional hyperemia, an increase in rCBF in response to neuronal activation, occurs in the running rat's hippocampus (Nishijima T and Soya H. Neurosci Res 54: 186–191, 2006). To further support our hypothesis, it was important to discover the neurogenic pathways behind the increase in Hip-CBF that occurred during running. Here, we examine the possible role of N-methyl-d-aspartate (NMDA) receptor/nitric oxide (NO) signaling and group I metabotropic glutamate receptors in mediating the Hip-CBF increase. Hip-CBF during running was measured by laser-Doppler flowmetry. Intrahippocampal drug administration was performed by microdialysis. Mild treadmill running (10 m/min) increased Hip-CBF, which was remarkably attenuated by either NMDA receptor antagonists (1 mM MK-801) or NO synthase inhibitors (2 mM NG-nitro-l-arginine methyl ester). However, group I metabotropic glutamate receptor antagonists {1 mM 7-(hydroxyimino)cyclopropa[ b]chromen-1a-carboxylate ethyl ester + 1 mM 2-methyl-6-(phenylethynyl)pyridine hydrochloride} augmented the running-induced Hip-CBF increase. We also found that rCBF in the olfactory bulb was unchanged with running. These results strongly suggest that Hip-CBF during mild exercise is regulated locally under hippocampal neuronal activity, mediated mainly through NMDA receptor/NO signaling. Collectively, these results, together with our previous findings, support our hypothesis that mild exercise elicits neuronal activation, which then triggers functional hyperemia in the rat hippocampus.


1987 ◽  
Vol 67 (1) ◽  
pp. 34-43 ◽  
Author(s):  
Peter T. Fox ◽  
Harold Burton ◽  
Marcus E. Raichle

✓ Positron emission tomography measurements of regional cerebral blood flow were used to detect focal neuronal activation in the first somatosensory cortex (SI) of humans induced by cutaneous vibratory stimulation. Intravenously administered water labeled with oxygen-15 (H215O) was used as a blood flow tracer to obtain five stimulated-state and two resting-state blood flow images in each of eight normal volunteers. Three cutaneous surfaces were tested: lips, fingers, and toes. Intense, highly focal SI responses were seen during all 39 stimulated-state trials. The SI responses from the three stimulation sites were anatomically distinct and formed a medial-to-lateral homonculus in every subject. Response magnitudes (increase in local blood flow) and response locales (expressed as proportionately measured bicommissural stereotaxic coordinates) were highly consistent among subjects and on repeated trials for each subject. These findings suggest that eliciting cerebral blood flow responses by cutaneous vibration provides a safe, rapid, and reproducible tool for locating and assessing the functional status of somatosensory cortex, and offers potential clinical and research utility. This study has established normative values for future applications of this experimental paradigm.


Sign in / Sign up

Export Citation Format

Share Document