Phase space reconstruction for improving the classification of single trial EEG

2014 ◽  
Vol 11 ◽  
pp. 10-16 ◽  
Author(s):  
Minyou Chen ◽  
Yonghui Fang ◽  
Xufei Zheng
Author(s):  
Nazia Parveen, Et. al.

In this paper, the authors propose a new technique for the classification of seizures, non-seizures, and seizure-free EEG signals based on non-linear trajectories of EEG signals. The EEG signals are decomposed using the EMD technique to obtain intrinsic mode functions (IMFs). The phase space of these IMFs is then reconstructed using a novel technique of higher-order dimensions (3D, 4D, 5D, 6D, 7D, 8D, 9D, and 10D). The existing techniques of seizure detection have deployed 2D & 3D phase–space reconstruction only. The Euclidean distance of all higher-order PSR is used as a feature to classify seizures, non-seizures, and seizure-free EEG signals. The performance of the proposed method is analyzed on the Bonn University database in which 7D reconstructed phase space classification accuracy of 99.9% has been achieved both using Random Forest classifier and J48 decision tree.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Naresh Vemishetty ◽  
Ramya Lakshmi Gunukula ◽  
Amit Acharyya ◽  
Paolo Emilio Puddu ◽  
Saptarshi Das ◽  
...  

Abstract This paper proposes a generalized Phase Space Reconstruction (PSR) based Cardiovascular Diseases (CVD) classification methodology by exploiting the localized features of the ECG. The proposed methodology first extracts the ECG localized features including PR interval, QRS complex, and QT interval from the continuous ECG waveform using features extraction logic, then the PSR technique is applied to get the phase portraits of all the localized features. Based on the cleanliness and contour of the phase portraits CVD classification will be done. This is first of its kind approach where the localized features of ECG are being taken into considerations unlike the state-of-art approaches, where the entire ECG beats have been considered. The proposed methodology is generic and can be extended to most of the CVD cases. It is verified on the PTBDB and IAFDB databases by taking the CVD including Atrial Fibrillation, Myocardial Infarction, Bundle Branch Block, Cardiomyopathy, Dysrhythmia, and Hypertrophy. The methodology has been tested on 65 patients’ data for the classification of abnormalities in PR interval, QRS complex, and QT interval. Based on the obtained statistical results, to detect the abnormality in PR interval, QRS complex and QT interval the Coefficient Variation (CV) should be greater than or equal to 0.1012, 0.083, 0.082 respectively with individual accuracy levels of 95.3%, 96.9%, and 98.5% respectively. To justify the clinical significance of the proposed methodology, the Confidence Interval (CI), the p-value using ANOVA have been computed. The p-value obtained is less than 0.05, and greater F-statistic values reveal the robust classification of CVD using localized features.


Sign in / Sign up

Export Citation Format

Share Document