Grasshopper optimization algorithm based improved variational mode decomposition technique for muscle artifact removal in ECG using dynamic time warping

2022 ◽  
Vol 73 ◽  
pp. 103437
Author(s):  
Pavan G Malghan ◽  
Malaya Kumar Hota
2018 ◽  
Vol 41 (7) ◽  
pp. 1923-1932 ◽  
Author(s):  
Prem Shankar Kumar ◽  
Lakshmi Annamalai Kumaraswamidhas ◽  
Swarup Kumar Laha

Empirical Mode Decomposition (EMD) and Variational Mode Decomposition (VMD) are data-driven self-adaptive signal processing methods to decompose a complex signal into different modes of separate spectral bands, in to a number of Intrinsic Mode Functions (IMFs). While the EMD extracts modes recursively and empirically, the VMD extracts modes non-recursively and concurrently. In this paper, both the EMD and the VMD have been applied to examine their efficacy in fault diagnosis of rolling element bearing. However, all the IMFs do not contain necessary information regarding fault characteristic signature of the bearing. In order to select the effective IMF, the Dynamic Time Warping (DTW) algorithm has been employed here, which gives a measurement of similarity index between two signals. Also, correlation analysis has been carried out to select the appropriate IMFs. Finally, out of the selected IMFs, bearing characteristic fault frequencies have been determined with the envelope spectrum.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 230 ◽  
Author(s):  
Xi Wu ◽  
Christopher Adam Senalik ◽  
James Wacker ◽  
Xiping Wang ◽  
Guanghui Li

An object detection method of ground-penetrating radar (GPR) signals using empirical mode decomposition (EMD) and dynamic time warping (DTW) is proposed in this study. Two groups of timber specimens were examined. The first group comprised of Douglas fir (Pseudotsuga menziesii) timber sections prepared in the laboratory with inserts of known internal characteristics. The second group comprised of timber girders salvaged from the timber bridges on historic Route 66 over 80 years. A GSSI Subsurface Interface Radar (SIR) System 4000 with a 2 GHz palm antenna was used to scan these two groups of specimens. GPR sensed differences in dielectric constants (DC) along the scan path caused by the presence of water, metal, or air within the wood. This study focuses on the feature identification and defect classification. The results show that the processing methods were efficient for the illustration of GPR information.


Author(s):  
Huifang Xiao ◽  
Xiaojun Zhou ◽  
Yimin Shao

Time synchronous averaging has been widely used for machinery fault diagnosis. However, it cannot reveal signal characteristics accurately in conditions of speed fluctuation and no tachometer due to the phase accumulation error. In this paper, an improved dynamic-time synchronous averaging method is proposed to extract the periodic feature signal from the fluctuated vibration signal for fault detection when no tachometer signal is available. In this method, empirical mode decomposition, dynamic time warping, and time synchronous averaging are performed on gear vibration signals to detect fault characteristic information. First, empirical mode decomposition is performed on the vibration signal and a series of intrinsic mode functions are produced. The sensitive intrinsic mode functions providing fault-related information are selected and reconstructed and the corresponding envelop signals are equal-space intercepted. Then, the phase accumulation error among the envelop signal segments is estimated by the dynamic time warping, which is further used to compensate the phase accumulation error between the intrinsic mode function segments of the reconstructed signal. Finally, the compensated intrinsic mode function segments are averaged to obtain the feature signal. Simulation analysis shows the advantages of the proposed method in extracting faulty feature signal from speed fluctuation signal without tachometer and identifying gear fault. Experiments with both normal and faulty gear were conducted and the vibration signals were captured. The proposed method is applied to identify the gear damage and the diagnosis results demonstrate its superiority than other methods.


Sign in / Sign up

Export Citation Format

Share Document