phase accumulation
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ji-Hui Zheng ◽  
Rui Peng ◽  
Jiong Cheng ◽  
Jing An ◽  
Wen-Zhao Zhang

Abstract A nonlocal circulator protocol is proposed in hybrid optomechanical system. By analogy with quantum communication, using the input-output relationship, we establish the quantum channel between two optical modes with long-range. The three body nonlocal interaction between the cavity and the two oscillators is obtained by eliminating the optomechanical cavity mode and verifying the Bell-CHSH inequality of continuous variables. By introducing the phase accumulation between cyclic interactions, the unidirectional transmission of quantum state between optical mode and two mechanical modes are achieved. The results show that nonreciprocal transmissions are achieved as long as the accumulated phase reaches a certain value. In addition, the effective interaction parameters in our system are amplified, which reduces the difficulty of the implementation of our protocol. Our research can provide potential applications for nonlocal manipulation and transmission control of quantum platforms.


Author(s):  
Shahram Moradi ◽  
Mahdi Zavvari ◽  
Yashar Zehforoosh ◽  
Armin Arashmehr ◽  
Jens Bornemann

2021 ◽  
Vol 2015 (1) ◽  
pp. 012157
Author(s):  
Odysseas Tsilipakos ◽  
Lei Zhang ◽  
Maria Kafesaki ◽  
Costas M. Soukoulis ◽  
Thomas Koschny

Abstract We propose a microwave realization of a metasurface that can delay broadband pulses without distortion in reflection. In order to obtain large and broadband pulse delay, we harness the synergetic phase delay of five sharply-resonant meta-atoms. More specifically, three electric-LC and two split ring resonators, supporting electric and magnetic dipole resonances, respectively, are combined in a subwavelength unit cell. The resonances are spectrally interleaved and specifically designed to provide a spectrally-constant reflection amplitude and group delay according to the prescription in [ACS Photonics 5, 1101, 2018]. The designed metasurface is electrically ultrathin (λ0/19), since it relies on resonant phase delay exclusively, instead of phase accumulation via propagation. We show delay of 700-MHz Gaussian pulses centred at 11 GHz by 1.9 ns, corresponding to approximately 21 carrier cycles. Our results highlight the practical potential of metasurfaces for broadband dispersion control applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Nooraiepour ◽  
Mohammad Masoudi ◽  
Helge Hellevang

AbstractOne important unresolved question in reactive transport is how pore-scale processes can be upscaled and how predictions can be made on the mutual effect of chemical processes and fluid flow in the porous medium. It is paramount to predict the location of mineral precipitation besides their amount for understanding the fate of transport properties. However, current models and simulation approaches fail to predict precisely where crystals will nucleate and grow in the spatiotemporal domain. We present a new mathematical model for probabilistic mineral nucleation and precipitation. A Lattice Boltzmann implementation of the two-dimensional mineral surface was developed to evaluate geometry evolution when probabilistic nucleation criterion is incorporated. To provide high-resolution surface information on mineral precipitation, growth, and distribution, we conducted a total of 27 calcium carbonate synthesis experiments in the laboratory. The results indicate that nucleation events as precursors determine the location and timing of crystal precipitation. It is shown that reaction rate has primary control over covering the substrate with nuclei and, subsequently, solid-phase accumulation. The work provides insight into the spatiotemporal evolution of porous media by suggesting probabilistic and deterministic domains for studying reactive transport processes. We indicate in which length- and time-scales it is essential to incorporate probabilistic nucleation for valid predictions.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Feifei Liu ◽  
Meng Wang ◽  
Xinping Zhang

Abstract Great progress in nanophotonics has been demonstrated in tailoring the impinging beams. The physics behind those intriguing effects is to a large extent governed by the parameter of the optical phase. While, simple nanostructures usually suffer from fundamental limitations on their efficiency in wave transformation, especially in the transmission system, associated with their inadequate phase accumulation, challenge their implementation in practical application. Here, we describe a transparent nanostructure built from a pair of partially overlapped gold and aluminum semi-nanoshells that show almost π phase accumulation through material-dependent plasmon resonances. Combined with an optical slab waveguide, the bimetallic metagratings exhibit prominent directional color routing properties in transmission light, which result from switchable Fano resonances between plasmon resonances of bimetallic nanostructures and ±1 order waveguide diffraction modes at two opposite oblique incidences due to sufficient phase shift provided by the asymmetric and bimetallic plasmon resonators. Both theoretical and experimental results show that the Fano-resonance-assisted color routing exhibits a relatively broadband tuning range (∼150 nm with an efficiency of up to 50%) and a color routing efficiency of up to 70% at the central wavelength of λ = 600 nm.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fei Qin ◽  
Boqing Liu ◽  
Linwei Zhu ◽  
Jian Lei ◽  
Wei Fang ◽  
...  

AbstractThe emerging monolayer transition metal dichalcogenides have provided an unprecedented material platform for miniaturized opto-electronic devices with integrated functionalities. Although excitonic light–matter interactions associated with their direct bandgaps have received tremendous research efforts, wavefront engineering is less appreciated due to the suppressed phase accumulation effects resulting from the vanishingly small thicknesses. By introducing loss-assisted singular phase behaviour near the critical coupling point, we demonstrate that integration of monolayer MoS2 on a planar ZnO/Si substrate, approaching the physical thickness limit of the material, enables a π phase jump. Moreover, highly dispersive extinctions of MoS2 further empowers broadband phase regulation and enables binary phase-modulated supercritical lenses manifesting constant sub-diffraction-limited focal spots of 0.7 Airy units (AU) from the blue to yellow wavelength range. Our demonstrations downscaling optical elements to atomic thicknesses open new routes for ultra-compact opto-electronic systems harnessing two-dimensional semiconductor platforms with integrated functionalities.


2020 ◽  
Author(s):  
Michiel Cottaar ◽  
Wenchuan Wu ◽  
Benjamin Tendler ◽  
Zoltan Nagy ◽  
Karla Miller ◽  
...  

AbstractPurposeMyelin has long been the target of neuroimaging research due to its importance in brain development, plasticity, and disease. However, most available techniques can only provide a voxel-averaged estimate of myelin content. In the human brain, white matter fibre pathways connecting different brain areas and carrying different functions often cross each other in the same voxel. A measure that can differentiate the degree of myelination of crossing fibres would provide a more specific marker of myelination.Theory & MethodsOne MRI signal property sensitive to myelin is the phase accumulation, which to date has also been limited to voxel-averaged myelin estimates. We use this sensitivity by measuring the phase accumulation of the signal remaining after diffusion weighting, which we call DIffusion-Prepared Phase Imaging (DIPPI). Including diffusion weighting before estimating the phase accumulation has two distinct advantages for estimating the degree of myelination: (1) it increases the relative contribution of intra-axonal water, whose phase is related linearly to the amount of myelin surrounding the axon (in particular the log g-ratio) and (2) it gives directional information, which can be used to distinguish between crossing fibres.ResultsUsing simulations and phantom data we argue that other sources of phase accumulation (i.e., movement-induced phase shift during the diffusion gradients, eddy currents, and other sources of susceptibility) can be either corrected for or are sufficiently small to still allow the g-ratio to be reliably estimated.ConclusionsThis new sequence is capable of providing a g-ratio estimate per fibre population crossing within a voxel.


2020 ◽  
Vol 25 (3) ◽  
pp. 60-67
Author(s):  
Y. Kornienko ◽  
◽  
I. Liashenko ◽  
V. Pugach ◽  
S. Skuratovskiy ◽  
...  

2020 ◽  
Author(s):  
Kayvan Forouhesh Tehrani ◽  
Nektarios Koukourakis ◽  
Jürgen Czarske ◽  
Luke J Mortensen

AbstractWavefront-shaping (WS) enables imaging through scattering tissues like bone, which is important for neuroscience and bone-regeneration research. WS corrects for the optical aberrations at a given depth and field-of-view (FOV) within the sample; the extent of the validity of which is limited to a region known as the isoplanatic patch (IP). Knowing this parameter helps to estimate the number of corrections needed for WS imaging over a given FOV. In this paper, we first present direct transmissive measurement of murine skull IP using digital optical phase conjugation (DOPC) based focusing. Second, we extend our previously reported Phase Accumulation Ray Tracing (PART) method to provide in-situ in-silico estimation of IP, called correlative PART (cPART). Our results show an IP range of 1-3 μm for mice within an age range of 8-14 days old and 1.00±0.25 μm in a 12-week old adult skull. Consistency between the two measurement approaches indicates that cPART can be used to approximate the IP before a WS experiment, which can be used to calculate the number of corrections required within a given field of view.Abstract Figure


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 490 ◽  
Author(s):  
Saima Kanwal ◽  
Jing Wen ◽  
Binbin Yu ◽  
Dileep Kumar ◽  
Xu Chen ◽  
...  

Ultraviolet (UV) optical devices have plenteous applications in the fields of nanofabrication, military, medical, sterilization, and others. Traditional optical components utilize gradual phase accumulation phenomena to alter the wave-front of the light, making them bulky, expensive, and inefficient. A dielectric metasurface could provide an auspicious approach to precisely control the amplitude, phase, and polarization of the incident light by abrupt, discrete phase changing with high efficiency due to low absorption losses. Metalenses, being one of the most attainable applications of metasurfaces, can extremely reduce the size and complexity of the optical systems. We present the design of a high-efficiency transmissive UV metalens operating in a broadband range of UV light (250–400 nm) with outstanding focusing characteristics. The polarization conversion efficiency of the nano-rod unit and the focusing efficiency of the metasurface are optimized to be as high as 96% and 77%, respectively. The off-axis focusing characteristics at different incident angles are also investigated. The designed metalens that is composed of silicon nitride nanorods will significantly uphold the advancement of UV photonic devices and can provide opportunities for the miniaturization and integration of the UV nanophotonics and its applications.


Sign in / Sign up

Export Citation Format

Share Document